Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 76501 dokumen yang sesuai dengan query
cover
Muhammad Wahyu
"Perkembangan teknologi robotika telah membuat kualitas kehidupan manusia semakin tinggi. Interfacing untuk mengontrol robot dapat menjadi suatu persoalan tersendiri, dikarenakan tidak terdapat visualiasasi dalam bentuk simulasi dan gerakan si robot, program interface pengendali robot yang beredar saat ini juga terbatas hanya untuk mengendalikan robot yang sudah dibuat sehingga tidak bisa diaplikasikan ke robot yang lain. Sistem interface yang dirancang ini akan membentuk visualisasi 3D dari robot dengan sendi-sendi yang secara dinamis bisa dikendalikan, sehingga bisa diaplikasikan ke robot mana saja dengan syarat tertentu. Sistem ini di buat dengan bahasa pemrograman Java yang memanfaatkan teknologi 3D. Dengan sistem yang dibuat ini akan bisa menampilkan simulasi gerakan dari si robot sebelum di perintahkan ke mikrokontroler yang disimulasikan rangkaiannya dengan program proteus.

The development of robotics technology have created a higher quality of human life. In the current robot technology, interfacing to control the robot can be a separate issue, because no visualization in the form of simulation and robot movement, currently the robot controller interface programs is limited only to control a robot that has been made so can't be applied to other robot. This interface system is designed to form a 3D visualization of the robot with dynamic joints that can be controlled, so this system can be applied to any robot with particular specification. This system develop using Java programming language that uses 3D technology. With this system will do simulation movement of robot before sending command to microcontroller that the schematic simulated using application name proteus."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51297
UI - Skripsi Open  Universitas Indonesia Library
cover
Raihan Naufal Satria, Author
"Inspeksi pipa adalah suatu metode yang sangat penting dalam semua industri energi. Pipa sendiri digunakan untuk mentransportasikan fluida di dalamnya dari suatu tempat ke tempat lainnya. Seiring berjalannya waktu, pipa harus diinspeksi dan dirawat karena fluida yang mengalir di dalamnya bersifat korosif. Inspeksi visual adalah metode yang mudah untuk diinspeksi. Namun, beberapa pipa yang sulit dijangkau sangat susah untuk di inspeksi. Mengembangkan cara yang mudah untuk menyelesaikan masalah ini adalah menggunakan dunia robotik. Di era yang sudah maju ini, dunia robotik sudah termasuk hal yang lazim untuk digunakan, tetapi masih ada beberapa limitasi dengan penggunaannya. Hal ini terjadi karena penggunaan robot memakan biaya yang mahal dari struktur robotnya sendiri. Untuk mengurangi beban biaya produksi dari robot sendiri, riset ini akan membahas kustomisasi produksi alat dengan menggunakan cara “3D Printing” dan mekanisme kontrol yang mudah digunakan dengan menambahkan fitur visual. Robot yang dinamakan In-Pipe Inspection Robot (IPIR) ini bisa menjadi permulaan dalam hal “smart technology” untuk inspeksi kondisi dalam pipa. Di segmen ini, inspeksi visual yang digunakan adalah menggunakan kamera. Untuk menjalankan kontrol dari alatnya sendiri yaitu menggungakan joystick sebagai input dan DC motor sebagai output. Dimensi pipa menggunakan diameter 6” dengan diameter dalam 154.08 mm. Metode riset ini pun akan dimulai dari studi literatur untuk tipe robot yang dipakai, lanjut dengan desain robot dan diakhiri dengan proses produksi dengan mengoptimasikan penggunakan 3D Printing.

.Pipe inspection is an important event in all of the energy industries. Pipes are used to transport any kinds of fluids from one place to another. During the period times, a pipe must be inspected and maintained because of the fluids that carries inside of a pipe in the energy industries can easily cause damage to the inner wall such as corrosion, erosion, degradation, and many other factors. Visual inspection is the easy method to inspect. But, a pipe in which placed at an unreachable area is very hard to inspect. Developing an easy way to solve this is by using in the field of robotics. In this new era, robotics is very common to use as well but there are some limitations of by using it. This because of the high cost production of the robot structure itself. To reduce the production cost and solve the problem of visual pipe inspection, this paper will be discussing the customization production of the robot structure by using a 3D Printing and a simple control mechanism with adding the visual feature. A robot called In-Pipe Inspection Robot (IPIR) can be the start of having a smart technology for inspecting the condition of the inner wall pipe. In this part, the visual inspection is using a camera. For the driving control of the robot will be using a joystick act as an input and DC motor as the output. The pipe size diameter will be using a 6” pipe with an inner diameter of 154.08 mm. The method of by doing this research is start from determine and study the robot type then design the robot and print the design by optimizing the use of 3D Printing.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hilman Zikri Umar
"Permintaan pasar yang terus menuntut peningkatan proses merancang model 3D agar dapat dilakukan dengan cara yang lebih sederhana dan mudah mengindikasikan dibutuhkannya sebuah metode perancangan yang lebih cepat dan fleksibel. Tantangan-tantangan seperti ini menggerakkan proses perancangan kearah desain otomasi untuk meningkatkan efekvifitas waktu serta proses perancangan.
Penelitian ini mencoba untuk melakukan perbaikan dan peningkatan proses perancangan desain 3D yang dirancang berdasarkan perhitungan dan standarisasi yang telah tersedia kearah otomasi desain dengan menggunakan aplikasi bahasa pemograman logika iLogic Autodesk Inventor untuk mendesain 3D template sebagai alat bantu desain otomasi Air-Slide Conveyor.
Metode yang dikembangkan telah diimplementasikan ke dalam program dan dapat mengotomasi berbagai konfigurasi parameter seperti tipe, material, sudut kemiringan, dan lain-lain sehingga dapat menghasilkan Air-Slide Conveyor yang optimal dan memenuhi berbagai kebutuhan desain dengan proses yang lebih cepat.

With market demand on improvement 3D model rsquo s design process, which allows the process can be done in simpler and easier way indicates the need of a faster and more flexible method. These challenges drive the design process towards automatic design to improve time effectiveness in designing 3D model.
This research tries to make improvements and innovation in 3D design process that is designed by calculation and standardization towards design automation by using iLogic Autodesk Inventor, also design 3D template as an Air Slide Conveyor rsquo s automation design tool.
The developed method has been implemented to a program and able to automate various parameter configurations such as type, materials, inclination, etc. In the end, using 3D template to produce an effective and optimal model of Air Slide Conveyor, can afford various design requirements with easier and faster process.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67093
UI - Skripsi Membership  Universitas Indonesia Library
cover
Auralius OM
"Robotika telah menjadi hal yang sangat penting di dalam dunia industri belakangan ini. Di dunia industri sendiri banyak pabrik-pabrik yang telah menerapkan otomasi dalam proses produksi untuk meningkatkan produktivitas perusahaan. Agar dapat diterapkan dengan baik, suatu robot harus dapat dikendalikan secara baik juga Skripsi ini difokuskan untuk membahas tentang pengendalian posisi pada robot lengan manipulator lima sendi buatan Mitsubishi dengan model Movemaster RVM1. Pengendalian dilakukan terhadap posisi angular motor tiap-tiap sendi dari robot lengan manipulator tersebut. Metode yang digunakan adalah metode Proportional Integral (PI) di mana robot lengan manipulator dihubungkan ke komputer yang menjalankan MATLAB_ dengan perangkat keras untuk interfacing yang dibuat sendiri. Skripsi ini juga membahas analisa kinematika pada robot lengan Mitsubishi Movemaster RV-M1. Analisa kinematika yang dibahas meliputi penurunan persamaan kinematika maju dan penerapan algoritma kinematika mundur dengan metode pseudoinvers. Sistem yang telah dibuat kemudian diuji responnya terhadap masukan berupa fungsi step, dan juga diuji kemampuannya untuk mengikuti masukan berupa trayektori.

Lately robotics has become a very important thing in industry. The industry have already implemented otomation in their production process in order to increase their productivity. A robot requires a control system so that it can be implemented effectively. This final-year project discusses about designing and building a pc-based controller for an articulated-arm-manipulator robot Mitsubishi RV-M1. The controller was made to control the angular position of all robot joints. Controlling method which was used here is Proportional Integral (PI) method. The robot was connected to a computer running MATLAB_ through a self-made interfacing device. This final-year project also contains kinematics analysis of an articulated-armmanipulator robot Mitsubishi RV-M1, including derivation of its forward kinematics equations and implementation of pseudo inverse algorithm in order to solve its inverse kinematics problem. After that, the robot underwent some tests and then the results were analysed in order to determine how good its response to unit-step and trajectory inputs."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S40350
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yunike Levina
"Dalam kehidupan sehari-hari tak jarang ditemukan pekerjaan yang membutuhkan lebih dari satu orang dalam penyelesaiannya. Konsep tersebut diadaptasikan ke penyelesaian tugas kompleks untuk sistem otonomi dengan lebih dari satu mobile robot atau disebut juga mobile robot kooperatif. Dalam mengakomodasi sistem mobile robot kooperatif yang baik, beberapa aspek perlu diperhatikan terutama komunikasi antar anggotanya.Pada skripsi ini, mobile robot akan dirancang dengan menggunakan trayektori linier dan sinusoidal sebelum antar robotnya dikomunikasikan untuk bertukar informasi.
Sistem meggunakan protokol komunikasi nirkabel internet socket sebagai media pertukaran informasi antar robotnya sehingga pengujian terhadap komunikasi juga perlu dilakukan.Berdasarkan hasil pengujian dapat diketahui bahwa setiap mobile robot mempunyai karakteristik dan pergerakan yang berbeda satu sama lain tetapi masih dapat dikendalikan dengan menggunakan nilai pengendali yang sama. Hasil pengujian juga menunjukkan bahwa komunikasi dengan internet socket sudah dapat digunakan dalam aplikasi mobile robot komunikatif.

In daily life, a lot of tasks need more than one people to complete because of it complexity. The concept of using more hand to complete a complex problems is adapted in autonomous system that used more than one robot which often defined as cooperative robot. In order to accommodate a good cooperative mobile robot system, interrobot communication should be carefully designed.In this script, the mobile robot would be design while using linear and sinusoidal trajectory to test whether before being communicated between each other.
The system using wireless internet socket communication protocol as the information exchange's media between the robots, therefore an experiment need to be done to test the communication as well.Accordintg to experiment done, the result show that each robot has its own characteristic and movement dyamics. However, the differences are still tolerable and still can be controlled using the same controllers'constans.The experiment also show that internet socket communication is proven to be able implemented in communicative mobile robots.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68356
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nauriana
"Robot penghindar halangan adalah robot yang sengaja dirancang untuk dapat menghindari penghalang yang berada disekitarnya. Robot penghindar halangan ini dibuat dengan tiga bagian utama yaitu masukan dengan menggunakan sensor ultrasonik, sistem pengendali dengan menggunakan mikrokontroler AT89S51 dan sistem aktuator dengan menggunakan motor dc. Robot ini dirancang dengan sistem kemudi roda diferensial yaitu masing-masing motor untuk kemudi roda kanan dan roda kiri. Penempatan sensor ultrasonik adalah pada bagian depan, kanan dan kiri agar robot dapat berjalan untuk menghindari halangan yang berada di sekitarnya. Antarmuka serial yang digunakan pada robot berfungsi untuk menampilkan jarak antara robot dengan objek penghalang disekitarnya. Pengujian robot dilakukan dengan menempatkan robot pada suatu kondisi dengan posisi penghalang yang berbeda-beda. Dari hasil pengujian yang dilakukan terhadap robot tersebut, melalui analisa data dan grafik, robot mampu menghindari setiap halangan yang ada.

Avoider robot is mean robot who is designed to avoid the block in around. This robot is made with three part; input from ultrasonic sensor, system controller using microcontroller AT89S51 and actuator using dc motor. This robot designed with differential wheel drive, that is used independently motor for each left motor and right motor. The placed of ultrasonic censors on the front of robot, on the left side and on the right side used for make robot can walk avoid the block around. Serial interfacing that used on the robot is for showing the distance between robot and the object around the robot. To look at the function of the robot, the robot placed on the situation that have different blocking position. From the result of the test, the data analysis and the chart from the data, we know that robot be able to avoid the block in around."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51408
UI - Skripsi Open  Universitas Indonesia Library
cover
Fauzan Marwan
"Dewasa ini banyak industri pekerjaan yang membutuhkan mobile robot atau robot beroda untuk meningkatkan efisiensi. Agar robot mampu berjalan otonom sesuai perintah, robot harus mengetahui terlebih dahulu peta dan posisi pada suatu lingkungan. Oleh karena itu muncul metode Simultaneous Localization and Mapping atau SLAM. SLAM bertujuan membuat peta dan mengetahui posisinya dalam waktu yang bersamaan. Salah satu wadah robot SLAM yang sedang dikembangkan adalah robot RaceCar dengan tujuan pembelajaran, prototipe mobil otonom, dan keperluan industri lainnya. Pada penelitian ini, sistem navigasi berbasis SLAM diimplementasikan pada robot RaceCar berdasarkan referensi kelompok riset HYPHAROS dengan platform Robot Operating System (ROS). Robot menggunakan Odroid-XU4 sebagai pengendali utama, algoritma GMapping dan sensor RPLidar-A1 untuk pemetaan, sensor IMU Gy-85 untuk lokalisasi, algoritma Dijkstra perencanaan jalur, Arduino Uno untuk menggerakkan motor, serta L1 Controller sebagai pengendalian kemudi. Robot akan diuji performanya dengan beberapa tipe pengujian seperti pengujian lingkungan (lingkungan statik dan dinamik), pengujian pemetaan, dan pengujian performa navigasi. Dari eksperimen tersebut, peneliti membuat program akuisisi data robot menggunakan bahasa C++ dengan bantuan ROS. Hasil persen galat performa ketepatan target navigasi dan pengendalian pada navigasi berbasis peta yang didapat adalah 10.4% untuk sumbu x, 34.6% untuk sumbu y. Sedangkan pada navigasi reaktif adalah 46.7% untuk sumbu x, 20% untuk sumbu y.

Nowadays many job industries need mobile robots or wheeled robots to improve efficiency. In order for the robot to run autonomously as commanded, the robot must first know the map and position in an environment. Therefore, Simultaneous Localization and Mapping or SLAM method appears. SLAM aims to create a map and know its position at the same time. One of SLAM robot type that is being developed is a race car robot for the learning objectives, autonomous car prototypes, and other industrial needs. In this study, SLAM-based navigation system was implemented in robot race car based on reference of HYPHAROS research group with Robot Operating System (ROS) platform. The robot uses Odroid-XU4 as the main controller, GMapping algorithm and RPLidar-A1 sensor for mapping, Gy-85 IMU sensor for localization, DWA algorithm for track planning, Arduino Uno to drive motor, and L1 Controller as steering control. The robot will be tested for performance with several types of test such as environmental test (static and dynamic environments), mapping test, and navigation performance test. From these experiments, researchers created a robot data acquisition program using C++ language with the help of ROS. The result of percent performance error of navigation target accuracy and control on map-based navigation obtained was 10.4% for x axis, 34.6% for y axis. While in reactive navigation is 46.7% for x axis, 20% for y axis."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Patar Bangun
"Daerah yang berbahaya dan sulit dijangkau pada reruntuhan akibat bencana serta keterbatasan fisik manusia, menyebabkan perlunya suatu robot sebagai pengganti kerja tim SAR dalam melakukan misinya. Salah satu faktor yang penting dimiliki oleh robot dalam SAR adalah kecepatan dalam melakukan tugasnya. Hal ini karena kondisi korban yang kritis dan segera butuh pertolongan, dan juga kemungkinan terjadinya reruntuhan susulan. Mekanisme hibrid beroda dan berkaki memaksimalkan pergerakkan robot SAR. Dengan mekanisme beroda, robot dapat berpindah dengan cepat pada daerah yang tidak terlalu sulit, sedangkan dengan mekanisme berkaki, robot dapat melewati rintangan pada daerah yang sulit.
Proyek Tugas Akhir ini merupakan tahap awal penelitian rancang bangun robot untuk aplikasi SAR. Dalam penelitian dilakukan perancangan dan pembuatan robot SAR yang menggunakan mekanisme beroda dan berkaki. Robot akan memiliki 4 kaki dengan 3 sendi dan 1 roda track pada masing-masing kaki. Motor servo digunakan sebagai aktuator pada mekanisme kaki dan motor DC digunakan sebagai aktuator pada mekanisme roda. Sebagai pemroses digunakan mikrokontroler H8/3052F. Sistem sederhana dibuat untuk mendukung pengujian terhadap performa robot ini.
Dari hasil eksperimen, mekanisme hibrid beroda dan berkaki memungkinkan robot melakukan banyak variasi gerakkan untuk mempermudah perpindahan robot pada daerah yang sulit. Mikrokontroler H8/3052F mempunyai fitur-fitur yang cukup untuk penelitian tahap awal robot SAR ini. Antarmuka antara mikrokontroler dan motor servo dari hasil perancangan, mampu untuk mengontrol multiservo secara independen menggunakan sinyal PWM tanpa adanya gangguan jitter, satu sinyal PWM dapat digunakan untuk mengontrol 8 motor servo secara independen. Dan antarmuka antara mikrokontroler dan motor DC dari hasil perancangan, dapat digunakan untuk mengontrol kecepatan dan arah putar motor DC sekaligus dengan menggunakan sebuah sinyal PWM.

The dangerous and difficult to reach the debris from the disaster and the physical limitations of human, causing the need for a robot as a substitute for the SAR team in performing its mission. One important factor which is owned by the robot in the SAR is the speed in performing its duties. This is because the critical condition of the victim who need immediate help, and also the possibility of aftershocks ruins. The mechanism of hybrid wheeled and legged maximize the movements of SAR robot. With the mechanism of wheeled, robot can move quickly in areas that are not too difficult, whereas with the mechanism of legged, robot can pass through obstacles in difficult areas.
This Final Project is a preliminary stage research of designing a robot for SAR applications. In this research is design and manufacture of SAR robot using wheeled and legged mechanisms. Robots will have four legs with three joints and a wheel track on each leg. Servo motors used as actuators in leg mechanism and DC motors are used as actuators in the wheel mechanism. As a processor is used H8/3052F microcontroller. Simple system is designed to support the testing of the robot's performance.
From the experimental results, mechanisms of hybrid wheeled and legged robots do a lot of variations possible move to ease the movement of robots in difficult areas. H8/3052F microcontroller has enough features for the early stages research of this SAR robot. The interface between microcontroller and servo motors from the result of design, able to control multiservo independently using PWM signal without jitter, a PWM signal can be used to control 8 servo motors independently. And the interface between microcontroller and DC motor from the result of design, can be used to control speed and direction of DC motor rotation at once using a PWM signal.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51280
UI - Skripsi Open  Universitas Indonesia Library
cover
Mark Gabriel Priyono
"Permasalahan utama pada pergerakan robot humanoid adalah kestabilan ketika berjalan. Tujuan penelitian ini adalah mendesain robot dengan basis biaya yang rendah dan melakukan standarisasi kecepatan dan tingkat kestabilan robot. Umumnya, riset pada humanoid robot menggunakan metode static walking atau dynamic walking. Penggunaan static walking pada robot menekankan pada keseimbangan setiap pose berjalan sedangkan dynamic walking menekankan pada efisiensi mobilitas robot. Kombinasi dari kedua metode ini dapat memperoleh keseimbagan dan efisiensi pergerakan robot dimana pada penelitian ini di aplikasikan dengan metode zero momen point dan kinematika terbalik. Penggunaan metode elemen hingga dilakukan untuk mengoptimasi titik massa dari humanoid robot dan memilih material yang optimal sehingga dapat mengurangi biaya produksi dari humanoid robot. Penelitian ini diselesaikan dengan pengujian real dan dibandingkan dengan simulasi untuk mendapatkan stabilitas dan kecepatan dari robot untuk membuktikan pergerakan yang cepat dan mudah. Hasilnya stabilitas humanoid didapatkan sebesar 3.44 mm dan kecepatannya 8.11 m/s.

Main problem of humanoid locomotion is walking stability. Goal of this research is designing low-cost humanoid robot and standarize the velocity and stability of robot. Commonly, research of humanoid robot use the method of static walking or dynamic walking for its stability. The usage of static walking on robots emphasize on stability pose while dynamic walking emphasizes on its mobility efficiency. The combination of both walking methods can achieve a stable and efficient humanoid robot movement, in which applies the rule of Zero Moment Point and Invers Kinematic. Using finite elemen analysis to optimize centre of mass from humanoid robot and select optimum material so it will decrease the production cost of humanoid robot. This research will be done by simulation and real examiner to get a stability margin and also velocity of robot to ensure a quick and easy robot motion planning. The result of humanoid robot stabiliy margin is 3.44 mm and its velocity 8.11cm/s."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63756
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Syafiuddin
"Skripsi ini membahas perancangan dan pembuatan perangkat keras dan perangkat lunak robot pemadam api yang mampu bergerak dengan baik pada lingkungan sekitar tanpa pengendalian manusia. Robot mempunyai tugas untuk mencari api di dalam ruangan dan mematikannya. Robot bergerak di dalam labirin sebagai lingkungannya.
Agar dapat bergerak dengan baik dalam lingkungannya, jaringan syaraf tiruan diterapkan sebagai pengendali pergerakan robot pemadam api. Jaringan syaraf tiruan yang digunakan adalah jaringan syaraf tiruan back propagation. Robot ini menggunakan mikrokontroller AVR dari Atmel Corporation yang berjenis ATMEGA32.
Analisa dilakukan dengan mengamati pergerakan robot didalam labirin. Robot dapat bergerak dengan baik didalam labirin tanpa mengalami tabrakan dengan dinding labirin. Hal ini menunjukkan bahwa jaringan syaraf tiruan dapat digunakan sebagai salah satu pengendali pergerakan robot.

This research was conducted to practical application of hardware and software for mobile fire fighting robot. The main task of the robot is finding out a flame and extinguishing it. The flame is placed somewhere in rooms. To get into the destination room, it has to avoid obstacles along the path of labirin.
Artificial neural network is used to control the movement of robot. This research using artificial neural network back propagation. AVR microcontroller from Atmel Corporation (ATMEGA 32) is used for movement process in a labirin.
Analyze is done on movement of robot in a labirin. Robot has ability running in a labirin and without crash the wall of labirin. This result of this research is an artificial neural network algorithm which can be used as artificial intelligence of the robot."
2008
S40535
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>