Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 66283 dokumen yang sesuai dengan query
cover
A. Dipri A.
"Penyakit pada jantung merupakan salah satu penyebab kematian pada manusia di seluruh dunia. Salah satunya merupakan serangan jantung yang disebabkan adanya kelainan pada katup jantung yang dapat dideteksi melalui suara murmur pada detak jantung penderita. Skripsi ini merancang sistem pengenalan penyakit jantung dengan menggunakan metode Jaringan Syaraf Tiruan. Jaringan Syaraf Tiruan (JST) adalah suatu metode komputasi untuk memodelkan suatu sistem. Bentuk dan sifat JST yang sangat flexible memungkinkan JST digunakan untuk memodelkan, merancang dan menganalisis pengenalan penyakit jantung. Metode yang digunakan adalah backpropagation yang terdiri atas lapisan masukan, lapisan tersembunyi dan lapisan keluaran. Pada penelitian ini analisis yang dilakukan adalah training data dengan fungsi gradient (traingd) serta menggunakan fungsi aktivasi purelin. Hasil dari pengujian kelainan jantung yang diperoleh akurasi rata-ratanya sebesar 82,22 %.

Heart disease is one of dead effect of human being in the world. One of them is heart attack which is cause by valve heart disease which can be detected by murmur sound of heartbeat patients. This Final Project is design of heart disease recognition system using Neural Network method. Neural Network is a computing method for modeling the system. Neural Network configuration and characteristic is very flexible enable which used for modeling, design dan analysing heart disease recognition. The methods which used is backpropagation which consist of input layer, hidden layer and output layer. In this research the analysis that has been done is file training with gradient function (traingd) and using purelin activation function. The result from testing heart disease is obtained average accuracy about 82,22 %."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51421
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Rizky Hartaman
"Sampai saat ini, serangan jantung masih menjadi penyebab utama kematian dibanyak tempat di dunia. Salah satunya adalah kelainan pada katup jantung yang dapat dideteksi melalui suara murmur pada detak jantung penderita. Skripsi ini membahas tentang perancangan sistem pengenalan penyakit jantung berdasarkan suara detak jantung dengan metode HMM. Sistem ini terbagi menjadi dua proses utama, yaitu pembentukan database dan pengenalan penyakit jantung. Kedua proses ini dilakukan dengan cara yang hampir sama, yaitu tiap sampel akan mengalami proses pelabelan, pembuatan codebook dan pembentukan parameter HMM. Hanya saja, pengolahan sinyal suara pada proses pengenalan mengacu database yang telah lebih dulu diproses. Dimulai dengan pembentukan vektorvektor data dengan teknik kuantisasi vektor (VQ), yang kemudian dicari suatu nilai centroid yang presisi untuk dijadikan state HMM dalam menentukan nilainilai parameter yang dibutuhkan.
Berdasarkan parameter-parameter inilah, dapat dihitung suatu nilai probabilitas (Log of Probability) maksimum yang akan menunjukkan hasil keluarannya. Dari hasil perancangan sistem ini, akan dibandingkan akurasi sistem terhadap variasi nilai durasi sampel, jumlah sampel, dan ukuran codebook. Pada penelitian ini ukuran codebook yang optimal adalah 64, jumlah database yang optimal sebesar 10 (sepuluh) buah, dan rentang waktu sampel yang optimal adalah 0,7 detik. Sementara akurasi sistem secara keseluruhan bervariasi antara 60% hingga 85%.

Heart attack is still being the number one killer until now all over the world. A part of heart diseases which can be detected by murmur sound and will be explained here is valve anomaly. This thesis is talking about heart disease recognition based on its heart sound system design using HMM method. The system consists of two main processes: database construction and diseases recognition. Both of this processes is done with almost exact ways. Each samples will be processed through labelling, codebook construction, and HMM parameter making. The difference is that in recognizing process, sound signal will be compared to database which has been made before. The whole process is started with data vectors production by vector quantization (VQ) which can be used to analyze precise centroid positions. The centroid will define HMM states and parameters.
A Log of Probability (LoP) will be calculated from the parameter values. The largest value of LoP will be declared as an output of the system. Output of each samples are compared to get system accuracy based on variation of sample duration, sample amount, and codebook size. The optimum codebook size in this research is 64, optimum sample amount in database is 10, and 0.7s sample duration. Overall, accuracy of the system is variating from 60% up to 85%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51389
UI - Skripsi Open  Universitas Indonesia Library
cover
Sitinjak, Hermanto
"Suara denyut jantung memiliki pola khusus yang bersesuaian dengan kondisi jantung seseorang. Jantung yang tidak normal akan menimbulkan suara khas yang disebut murmur. Murmur disebabkan oleh berbagai hal yang menunjukkan kondisi jantung seseorang. Melalui Phonocardiogram (PCG) dapat dilihat gelombang sinyal denyut jantung seseorang. Spektrum denyut jantung abnormal memiliki pola spektrum yang khas. Sehingga melalui pola spektrum tersebut dapat diketahui kelainan jantung apa yang diderita oleh seseorang. Penelitian ini akan membuat suatu program simulasi yang akan mengenali tiga jenis kelainan jantung. Program simulasi ini menggunakan metode Jaringan Syaraf Tiruan dalam mengidentifikasi ketiga jenis kelainan jantung tersebut. Data yang akan digunakan sebagai database yaitu berupa sampel suara denyut jantung dengan format .wav, mono. Metode pelatihan Jaringan Syaraf Tiruan yang dibuat ini menggunakan fungsi traingdx yang terdapat pada Neural Network Toolbox MATLABTM. Adapun penggunaan fungsi traingdx ini karena waktu pelatihannya lebih cepat. Berdasarkan hasil pengujian pengenalan beberapa sampel kelainan jantung diperoleh akurasi rata-rata sebesar 82.2% dalam mengenali tiga jenis kelainan jantung tersebut.

Heartbeat has a unique pattern which corresponding to heart condition. Abnormal heart has a unique sounds which called murmurs. An murmur can be caused by something that indicates heart condition. It can be shown as a signal waveform of heartbeats by Phonocardiogram (PCG). Abnormal heartbeat has a unique spectral pattern. So with that spectral pattern it can be identify what kind of murmur types. This research make a simulation program which will identify 3 kinds of murmur heartbeats. This simulation program use Artificial Neural Network (ANN) to identify that murmurs. ANN database will use some murmurs heartbeats which record in .wav, mono fomat. Training method in this ANN use traingdx function which provided by Neural Network Toolbox MATLABTM. Traingdx function is a faster training method. This simulation program has 82.2% accuracy to detect 3 kinds of heartbeat murmur."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51434
UI - Skripsi Open  Universitas Indonesia Library
cover
Abdulloh
"Tujuan: Tujuan dari penelitian ini adalah mendapatkan model jaringan saraf tiruan dengan algoritma pembelajaran backpropagation berdasarkan data masukan dari pola sidik jari penderita obesitas. Diharapkan model JST yang diperoleh dapat menjadi alat bantu diagnosis bagi para klinisi dalam mengidentifikasi kasus obesitas berdasarkan keturunan.
Metode: Data dari pola sidik jari penderita obesitas dan data penunjang lainnya diuraikan menjadi variabel masakan Variabel keluaran ditentuknn berdasarkan kasus obesitas yang diderita oleh pasien. Kemudian data sampel dibagi dua yaitu data untuk training dan data untuk testing. Dengan menggunakan data training maka Metode Jaringan syaraf tiruan mempelajari pola sidik jari pendarita obesitas yang kemudian digunakan untuk memprediksi data testing. Akurasi identifikssi atau pengenalan pola sidik jari penderita obesitas akan sangat ditentukan oleh hasil prediksi algoritma jaringan syaraf tiruan terhadap data testing.
Hasil: Dalam proses pemhelajaran dengan metode jaringan berbasil melakukan pengenal terhadap data training dengan error sebesar O,QI berhasil dicapai. Untuk prediksi polo sidik jari melalui data testing rata-rata keberhasilan adalah 71,82%. Angka prosentasi keberbasilan ini cukup baik dan depat dijadikan alat bantu bagi para praktisi medis di bidang obesitas dalam menentukan faktor keturunan dari penyakit obesitas.
Kesimpulan: Percobaan ini menghasilkan model JST yang dapat diaplikasikan pada pengelan pola sidik jari pendarita obesitas. Rata-rata keberhasilan prediksi sebesar 71,82% dapat ditingkat dengan menambah data training bagi Metode Jaringan Saraf Tiruan.

Objective: The objective of this research is to obtain an artificial neural network model with backpropagation learning algorithm based on input data from the fingerprint pattern of the obese patients. It is expected that ANN models can be obtained as diagnostic tool for clinicians in identifying cases of obesity based on descent.
Methods: Data from the fingerprint pattern of obesity and other supporting data is decomposed into input variables. Output variable is determined on a case-obesity suffered by the patient Then the sampled data is divided into two data. One for training and other for testing. By using training data. the method of artificial neural networks learn the patterns of the obese fingerprint which is then used to predict the testing data. Accuracy of fingerprint pattern recognition of obesity will be detemined by the results of neural network algorithm prediction against testing data.
Results: In the learning process stage, Artificial Neural Network succceded in identifying a network of training with error 0.01 was achieved. For the prediction of fingerprint patterns through data testing success rate was 80%. The rate for the percentage of success is quite good and can be used as a tool for medical practitioners in the field of obesity in determining obesity cases base of genetic factor.
Conclusion: This experiment resulted ANN model that can be applied to the fingerprint pattern recognition of obese patients. The average prediction success of 71,82% would be increase if we can add more data for 1raining process for Neural Network Method.
"
Depok: Program Pascasarjana Universitas Indonesia, 2011
T33677
UI - Tesis Open  Universitas Indonesia Library
cover
Arthania Retno Praida
"Untuk mengenali penyakit kanker sel darah putih (leukemia) dewasa ini masih dilakukan proses konvensional yang memakan waktu cukup lama dalam proses pengenalannya. Tugas akhir ini bertujuan untuk mengenali penyakit leukemia dari citra darah dengan menerapkan teknik pengolahan citra dan metode jaringan syaraf tiruan. Pada proses pengenalan penyakit ini, sistem yang sudah mengakuisisi citra darah akan melakukan proses cropping, resizing, dan membuat citra tersebut menjadi blok-blok matriks berukuran 4_4. Kemudian citra dalam format RGB dikonversikan ke dalam model warna HSV agar memiliki ruang warna yang lebih natural.
Untuk mendapatkan fitur warna salah satu elemen warna yakni Hue akan diekstraksi untuk mendapatkan matriks nilai karakteristiknya. Nilai karakteristik hasil ekstraksi fitur warna tersebut kemudian akan dilatih oleh jaringan syaraf tiruan dan dimasukkan ke dalam database. Jaringan syaraf tiruan terdiri atas 3 layer input, 3 layer tersembunyi dan 1 layer keluaran. Dari hasil uji coba, diperoleh tingkat akurasi rata - rata sebesar 83.33% menggunakan 3 input untuk setiap jenis penyakit leukemia dan 20 kali pelatihan jaringan syaraf tiruan.

Recognize the white blood cell cancer disease (leukemia) identification today, still use conventional method and time consuming. The Objective of this research is to identify leukemia disease from blood image using image processing technique and artificial neural network. In this identification disease process, the system which has made acquisition of the blood image will process the cropping, resizing and divide the image into 4 _ 4 matrix blocks. Then the image in RGB format is converted to HSV color model in order to have a more natural color.
In order to acquire color feature, one of the element which is Hue will be extracted to get characteristic value of the matrix. The characteristic value from the extracted color feature will then be trained by artificial neural network and inserted into the database. The artificial neural network consisted of 3 input layer, 3 hidden layer and 1 output layer. From the test result, we acquire an average level of accuracy of 83.33% using 3 inputs for every types of leukemia and 20 times of artificial neural network training.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S48409
UI - Skripsi Open  Universitas Indonesia Library
cover
Geraldi Oktio Dela Rosa
"Secara teoritis, biometrik dapat digunakan untuk mengidentifikasi dan memverifikasi suatu individu. Iris mata merupakan salah satu instrumen biometric yang handal, karena keunikan dari dan kompleksitasnya.
Di dalam penelitian ini dirancang bangun program identifikasi iris mata menggunakan metode Jaringan Syaraf Tiruan (JST). Citra mata dijital yang akan diidentifikasi pertama-tama dilakukan pra-pengolahan terlebih dahulu. Proses ini memisahkan bagian iris dari citra mata menggunakan metode morphologi, yaitu close, erosi dan dilasi. Selanjutnya, citra disegmentasi untuk memisahkan citra iris berbentuk lingkaran dalam koordinat x-y menjadi format polar r-θ berbentuk persegi panjang. Citra polar kemudian diekstrasi untuk mendapatkan nilai karakteristik rata-ratanya dalam bentuk matriks 40 x 1. Nilai karakteristik dilatih dan dimasukkan ke dalam database sebagai input pembanding untuk proses identifikasi. JST terdiri dari 10 layer tersembunyi, 1 layer keluaran, dengan fungsi aktifasi tansig dan purelin.
Setelah dilakukan pelatihan untuk 80 citra iris, baik mata kiri maupun kanan, proses identifikasi mencapai tingkat akurasi rata-rata sebesar 87% untuk 5 buah input citra dengan 20 kali uji coba.

Theorically, biometric can be used to identify dan verify an individu. Iris is one of biometric identifier that highly acceptable because of its uniqueness and complexity.
The objective of this research is to identifiy an iris using Artificial Neural Network (ANN) method. First, the digital infrared image of eye will be preprocessed which separate the iris from the eye using morphology technique, such as closing, erosion, and dilation. The iris is then transformed from x-y dimension into r-θ polar image, which convert the circle shape into rectangle one. The image was then extracted in order to get the average value of its intensities and saved in 40 x 1 matrix size. These values will be trained in the ANN and inserted into a database to be used as a comparator in identification process. The ANN consisted of 10 hidden layer, 1 output layer, and activation functions of tansig and purelin, respectively.
Using 80 images as training data, the identification accuracy reached 87 % for 5 images and 20 times of test for left side and right side eyes.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52158
UI - Skripsi Open  Universitas Indonesia Library
cover
Arief Rachman
"Tsunami adalah disebabkan oleh getaran gelombang gempa yang melebihi parameter tertentu. Skripsi ini membahas tentang perancangan sistem pengenalan gelombang gempa dengan menggunakan metode Jaringan Syaraf Tiruan. Jaringan Syaraf Tiruan (JST) adalah suatu metode komputasi untuk memodelkan suatu sistem. Bentuk dan sifat JST yang sangat flexible memungkinkan JST digunakan untuk memodelkan, merancang dan menganalisa pengenalan gelombang gempa. Metode yang digunakan adalah backpropagation yang terdiri atas lapisan masukan, lapisan tersembunyi dan lapisan keluaran. Pada penelitian ini analisa yang dilakukan adalah training data dengan fungsi gradient (traingd) serta menggunakan fungsi aktivasi purelin.

Tsunamis are seismic waves caused by vibrations that exceed certain parameters. This thesis discusses the design of seismic wave recognition system using neural networks. Artificial Neural Network (ANN) is a computational method for modeling a system. The form and nature of the ANN, which is very flexible allowing ANN used for modeling, designing and analyzing the introduction of seismic waves. The method used is backpropagation which consists of an input layer, hidden layer and output layer. In this research, analysis, training data is a function of gradient (traingd) and using the activation function purelin."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51276
UI - Skripsi Open  Universitas Indonesia Library
cover
Sangky Aryadhi
"Dalam skripsi ini dibuat perangkat lunak yang dapat mengenali tipe ABO golongan darah manusia melalui pengolahan citra berbasiskan Jaringan Syaraf Tiruan (JST). Pola sampel darah yang direaksikan dengan reagen akan memiliki hasil pasangan penggumpalan yang berbeda. Jenis reagen yang direaksikan adalah antigen-A dan antigen-B. Pola pasangan darah dan reagen serta bentuk penggumpalan citra darah menjadi ciri dan kombinasi yang unik untuk membedakan tipe-tipe darah yang ada.
Data sampel darah berupa citra digital yang diperoleh menggunakan kamera digital. Sampel darah direaksikan dengan reagen di atas preparat dengan urutan reagen anti-A ditempatkan pada bagian kiri preparat dan reagen anti-B pada bagian kanan. Sebelum diolah dalam sistem JST, data melewati pra-proses, yaitu proses perbaikan citra digital yang terdiri dari proses pencuplikan, gray-level quantization, dan normalisasi dalam bentuk matriks. Hasil akhirnya berupa citra fitur hitam putih dalam matriks berukuran 5×5. Hasil pra-proses kemudian dihitung nilai parameter karakteristiknya, yaitu nilai rata-rata matriks tersebut. Nilai ini selanjutnya akan dijadikan input bagi proses pelatihan jaringan syaraf tiruan dengan metode backpropagation.
Jumlah data sampel sebanyak 120 set, dimana 80 di antaranya digunakan untuk melatih JST, dan sisanya digunakan untuk menguji JST. Hasil simulasi menunjukkan sistem mampu mengenali golongan darah dengan tingkat akurasi hingga 90%.

In this research, an identification system of human blood type is designed using image processing techniques and the Artificial Neural Network (ANN) with backpropagation algorithms. The pattern of human blood type was formed using a chemical reaction between the blood and a reagent. The reagent that used in the reaction process are anti-A and anti-B reagent. Using a flat glass preparat as a media, the anti-A reagent is mixed to the blood sample on the left side and the anti-B reagent on the right side. Combination of blood coagulation pairs could distinguish the blood type.
The blood coagulation pair is converted into digital images after taken by a digital camera. The image is then pre-processed and normalized to 50×50 matrix size. The matrix is divided to different blocks and reduced to 5×5 grayscale image. The preprocessing involved sampling, gray-level quantization, and normalization. After preprocessing, the mean of 5×5 gray scale image will be calculated and used as the input for the ANN.
The total number of blood sample data is 140 pairs, 80 set of them are used for training process of the ANN and the rest are used for identification. The simulation result shows that the system is able to identify up to 90% level of accuracy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40587
UI - Skripsi Open  Universitas Indonesia Library
cover
"Tujuan utama dari penelitian yang dilakukan adalah melakukan pengenalan pola isyarat tangan statis dalam bahasa Indonesia. Pengenalan pola isyarat tangan statis dalam bentuk citra secara garis besar dilakukan dalam 3 tahapan yang meliputi: 1) Segmentasi bagian citra yang akan dikenali berupa tangan dan wajah, 2) ekstraksi ciri, dan 3) klasifikasi pola. Data citra yang diterapkan ada 15 kelas kata isyarat statis. Segmentasi dilakukan dengan menggunakan filter HSV
dengan ambang berdasarkan warna kulit. Ekstraksi ciri dilakukan dengan dekomposisi wavelet Haar filter sampai level 2. Klasifikasi dilakukan dengan menerapkan sistem jaringan syaraf tiruan perambatan balik dengan arsitektur 4096 neuron pada lapisan input, 75 neuron pada lapisan tersembunyi dan 15 neuron pada lapisan output. Sistem diuji dengan menggunakan 225 data validasi dan akurasi yang dicapai adalah 69%.

Abstract
The main objective of this research is to perform pattern recognition of static hand gesture in Indonesian sign language. Basically, pattern recognition of static hand gesture in the form of image had three phases include: 1) segmentation of the image that will be recognizable form of the hands and face, 2) feature extraction and 3) pattern
classification. In this research, we used images data of 15 classes of words static. Segmentation is performed using HSV with a threshold filter based on skin color. Feature extraction performed with
the Haar wavelet decomposition filter to level 2. Classification is done by applying the back propagation system of neural network architecture with 4096 neurons in input layer, 75 neurons in hidden layer and 15 neurons in output layer. The system was tested by using 225 data validation and accuracy achieved was 69%."
[Direktorat Riset dan Pengabdian Masyarakat Universitas Indonesia, Universitas Jenderal Soedirman. Fakultas Sains dan Teknik], 2010
pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Dwi Sudarno Putra
"Perkembangan teknologi kontrol terus berlanjut dengan segala ragam pengembangannya, salah satu diantaranya adalah penerapan metode Jaringan Syaraf Tiruan dalam proses kontrol. Kendala yang saat ini dihadapi adalah kenyataan bahwa Jaringan Syaraf Tiruan memiliki respon yang relatif lambat, hal ini dikarenakan panjangnya algoritma sehingga memerlukan waktu komputasi yang lama. Maka dari itu tulisan ini akan membahas tentang pengembangan metode alternatif untuk mendapatkan algoritma Jaringan Syaraf Tiruan yang lebih cepat dan akurat. Ada dua yang sudah berhasil dikembangkan yaitu SOM Fuzzy dan LVQ Fuzzy dengan memfokuskan pada perhitungan jarak antar vektor fuzzy. Dimana, setelah dilakukan pengembangan dan pengujian, metode SOM Fuzzy dan LVQ Fuzzy terbukti mampu meningkatkan recognition dari metode SOM dan LVQ. Dari segi kecepatan, meskipun metode fuzzy yang dikembangkan ini memiliki waktu proses yang sedikit lebih lama daripada metode SOM dan LVQ reguler, namun jika dibandingkan dengan Backpropagation yang memiliki tingkat recognition sama baiknya waktu prosesnya metode fuzzy jauh lebih cepat.

The development of control technology continues with all kinds of development, one of them is the application of neural networks in process control. Constraints currently faced is the fact that neural networks have a slow response, this is because the length of the algorithm that requires a long computation time. So this paper will discuss the development of alternative methods to obtain algorithms of neural networks more quickly and accurately.The methods that have been successfully developed is the Fuzzy SOM and Fuzzy LVQ by focusing on the calculation of distance between fuzzy vectors. After development and testing, methods of Fuzzy SOM and Fuzzy LVQ been able to increase recognition of SOM and LVQ methods. In terms of speed, although the methods developed in this fuzzy processing time slightly longer than the regular method of SOM and LVQ, but when compared with a level of recognition Backpropagation as good when the process is fuzzy method is much faster."
Depok: Universitas Indonesia, 2011
T29527
UI - Tesis Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>