Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7411 dokumen yang sesuai dengan query
cover
Nauriana
"Robot penghindar halangan adalah robot yang sengaja dirancang untuk dapat menghindari penghalang yang berada disekitarnya. Robot penghindar halangan ini dibuat dengan tiga bagian utama yaitu masukan dengan menggunakan sensor ultrasonik, sistem pengendali dengan menggunakan mikrokontroler AT89S51 dan sistem aktuator dengan menggunakan motor dc. Robot ini dirancang dengan sistem kemudi roda diferensial yaitu masing-masing motor untuk kemudi roda kanan dan roda kiri. Penempatan sensor ultrasonik adalah pada bagian depan, kanan dan kiri agar robot dapat berjalan untuk menghindari halangan yang berada di sekitarnya. Antarmuka serial yang digunakan pada robot berfungsi untuk menampilkan jarak antara robot dengan objek penghalang disekitarnya. Pengujian robot dilakukan dengan menempatkan robot pada suatu kondisi dengan posisi penghalang yang berbeda-beda. Dari hasil pengujian yang dilakukan terhadap robot tersebut, melalui analisa data dan grafik, robot mampu menghindari setiap halangan yang ada.

Avoider robot is mean robot who is designed to avoid the block in around. This robot is made with three part; input from ultrasonic sensor, system controller using microcontroller AT89S51 and actuator using dc motor. This robot designed with differential wheel drive, that is used independently motor for each left motor and right motor. The placed of ultrasonic censors on the front of robot, on the left side and on the right side used for make robot can walk avoid the block around. Serial interfacing that used on the robot is for showing the distance between robot and the object around the robot. To look at the function of the robot, the robot placed on the situation that have different blocking position. From the result of the test, the data analysis and the chart from the data, we know that robot be able to avoid the block in around."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51408
UI - Skripsi Open  Universitas Indonesia Library
cover
Dafit Irwanto
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2005
TA671
UI - Tugas Akhir  Universitas Indonesia Library
cover
Patar Bangun
"Daerah yang berbahaya dan sulit dijangkau pada reruntuhan akibat bencana serta keterbatasan fisik manusia, menyebabkan perlunya suatu robot sebagai pengganti kerja tim SAR dalam melakukan misinya. Salah satu faktor yang penting dimiliki oleh robot dalam SAR adalah kecepatan dalam melakukan tugasnya. Hal ini karena kondisi korban yang kritis dan segera butuh pertolongan, dan juga kemungkinan terjadinya reruntuhan susulan. Mekanisme hibrid beroda dan berkaki memaksimalkan pergerakkan robot SAR. Dengan mekanisme beroda, robot dapat berpindah dengan cepat pada daerah yang tidak terlalu sulit, sedangkan dengan mekanisme berkaki, robot dapat melewati rintangan pada daerah yang sulit.
Proyek Tugas Akhir ini merupakan tahap awal penelitian rancang bangun robot untuk aplikasi SAR. Dalam penelitian dilakukan perancangan dan pembuatan robot SAR yang menggunakan mekanisme beroda dan berkaki. Robot akan memiliki 4 kaki dengan 3 sendi dan 1 roda track pada masing-masing kaki. Motor servo digunakan sebagai aktuator pada mekanisme kaki dan motor DC digunakan sebagai aktuator pada mekanisme roda. Sebagai pemroses digunakan mikrokontroler H8/3052F. Sistem sederhana dibuat untuk mendukung pengujian terhadap performa robot ini.
Dari hasil eksperimen, mekanisme hibrid beroda dan berkaki memungkinkan robot melakukan banyak variasi gerakkan untuk mempermudah perpindahan robot pada daerah yang sulit. Mikrokontroler H8/3052F mempunyai fitur-fitur yang cukup untuk penelitian tahap awal robot SAR ini. Antarmuka antara mikrokontroler dan motor servo dari hasil perancangan, mampu untuk mengontrol multiservo secara independen menggunakan sinyal PWM tanpa adanya gangguan jitter, satu sinyal PWM dapat digunakan untuk mengontrol 8 motor servo secara independen. Dan antarmuka antara mikrokontroler dan motor DC dari hasil perancangan, dapat digunakan untuk mengontrol kecepatan dan arah putar motor DC sekaligus dengan menggunakan sebuah sinyal PWM.

The dangerous and difficult to reach the debris from the disaster and the physical limitations of human, causing the need for a robot as a substitute for the SAR team in performing its mission. One important factor which is owned by the robot in the SAR is the speed in performing its duties. This is because the critical condition of the victim who need immediate help, and also the possibility of aftershocks ruins. The mechanism of hybrid wheeled and legged maximize the movements of SAR robot. With the mechanism of wheeled, robot can move quickly in areas that are not too difficult, whereas with the mechanism of legged, robot can pass through obstacles in difficult areas.
This Final Project is a preliminary stage research of designing a robot for SAR applications. In this research is design and manufacture of SAR robot using wheeled and legged mechanisms. Robots will have four legs with three joints and a wheel track on each leg. Servo motors used as actuators in leg mechanism and DC motors are used as actuators in the wheel mechanism. As a processor is used H8/3052F microcontroller. Simple system is designed to support the testing of the robot's performance.
From the experimental results, mechanisms of hybrid wheeled and legged robots do a lot of variations possible move to ease the movement of robots in difficult areas. H8/3052F microcontroller has enough features for the early stages research of this SAR robot. The interface between microcontroller and servo motors from the result of design, able to control multiservo independently using PWM signal without jitter, a PWM signal can be used to control 8 servo motors independently. And the interface between microcontroller and DC motor from the result of design, can be used to control speed and direction of DC motor rotation at once using a PWM signal.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51280
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Syafiuddin
"Skripsi ini membahas perancangan dan pembuatan perangkat keras dan perangkat lunak robot pemadam api yang mampu bergerak dengan baik pada lingkungan sekitar tanpa pengendalian manusia. Robot mempunyai tugas untuk mencari api di dalam ruangan dan mematikannya. Robot bergerak di dalam labirin sebagai lingkungannya.
Agar dapat bergerak dengan baik dalam lingkungannya, jaringan syaraf tiruan diterapkan sebagai pengendali pergerakan robot pemadam api. Jaringan syaraf tiruan yang digunakan adalah jaringan syaraf tiruan back propagation. Robot ini menggunakan mikrokontroller AVR dari Atmel Corporation yang berjenis ATMEGA32.
Analisa dilakukan dengan mengamati pergerakan robot didalam labirin. Robot dapat bergerak dengan baik didalam labirin tanpa mengalami tabrakan dengan dinding labirin. Hal ini menunjukkan bahwa jaringan syaraf tiruan dapat digunakan sebagai salah satu pengendali pergerakan robot.

This research was conducted to practical application of hardware and software for mobile fire fighting robot. The main task of the robot is finding out a flame and extinguishing it. The flame is placed somewhere in rooms. To get into the destination room, it has to avoid obstacles along the path of labirin.
Artificial neural network is used to control the movement of robot. This research using artificial neural network back propagation. AVR microcontroller from Atmel Corporation (ATMEGA 32) is used for movement process in a labirin.
Analyze is done on movement of robot in a labirin. Robot has ability running in a labirin and without crash the wall of labirin. This result of this research is an artificial neural network algorithm which can be used as artificial intelligence of the robot."
2008
S40535
UI - Skripsi Open  Universitas Indonesia Library
cover
Ferdian Sulaiman
"Pengujian yang dilakukan pada skripsi ini dilakukan untuk mengimplementasikan dan menganalisis sebuah algoritma navigasi otomatis untuk robot beroda yang juga ditunjang dengan algoritma untuk menghindari tabrakan. Algoritma ini bertujuan membuat robot yang dapat bergerak mengikuti jalur yang telah diberikan oleh sebuah aplikasi peta. Robot tersebut menggunakan smartphone Android sebagai unit pemrosesan utamanya dan IOIO sebagai perantara smartphone dengan sensor dan aktuatornya. Dalam menjalankan algoritma, digunakan GPS dan aplikasi peta dari smartphone. Skenario pengujian menggunakan tiga nilai akurasi posisi robot yang berbeda dan dilakukan sebanyak sepuluh pengujian per nilai akurasi. Nilai akurasi ini menentukan jarak dimana robot akan menganggap bahwa posisinya sudah berhasil mencapai suatu koordinat. Setelah dilakukan pengujian, hasil pengujian menunjukkan bahwa untuk akurasi posisi robot sebesar 3.145 m (perbedaan garis bujur dan lintang sebesar 0.00002), didapat nilai rata-rata jarak posisi robot dengan koordinat tertentu sebesar 2.003 m dengan rata-rata waktu tempuh selama tiga menit dua puluh satu detik. Untuk akurasi posisi robot sebesar 6.297 m (perbedaan garis bujur dan lintang sebesar 0.00004), didapat nilai rata-rata jarak 4.490 m dengan rata-rata waktu tempuh selama dua menit tiga puluh lima detik. Untuk akurasi posisi robot sebesar 10.22 m (perbedaan garis bujur dan lintang sebesar 0.000065), didapat nilai rata-rata jarak 6.720 m dengan rata-rata waktu tempuh selama dua menit tiga belas detik. Hal ini berarti algoritma tersebut memang dapat diimplementasikan ke robot beroda dengan tingkat akurasi tertentu. Tetapi, semakin tinggi tingkat akurasi, semakin lama waktu navigasi yang dibutuhkan. Kemampuan navigasi ini juga sangat dipengaruhi oleh sinyal GPS yang diterima oleh smartphone.

Trials in this final project are done to implement and analyze an automatic navigation algorithm for wheeled robot, with the support of collision avoidance algorithm. The purpose of this algorithm is to create a robot which can follow the route given by the map application. This robot uses smartphone Android as its main processor and IOIO as the link between this smartphone and the robot?s sensors and actuators. The built-in GPS and map application from smartphone are used in running the algorithm. The trial scenarios uses three different robot position accuracy and every scenario is done ten times. The accuracy determines the distance where the robot will assume that its position has reached certain coordinate. After the trials are done, the results show that when the robot position accuracy is 3.145 m (0.00002 difference in latitude and longitude), the average distance is 2.003 m with average travel time of three minutes and twenty one seconds. When the robot position accuracy is 6.297m (0.00004 difference in latitude and longitude), the average distance is 4.490m with average travel time of two minutes and thirty five seconds. When the robot position accuracy is 10.22 m (0.000065 difference in latitude and longitude), the average distance is 6.720m with average travel time of two minutes and thirteen seconds. It means that this algorithm is possible to be implemented in wheeled robot with certain accuracy. But, the more accurate it is, the longer it takes to navigate through the route. This ability to navigate is also very affected by GPS signal received by the smartphone."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55250
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Wahyu
"Perkembangan teknologi robotika telah membuat kualitas kehidupan manusia semakin tinggi. Interfacing untuk mengontrol robot dapat menjadi suatu persoalan tersendiri, dikarenakan tidak terdapat visualiasasi dalam bentuk simulasi dan gerakan si robot, program interface pengendali robot yang beredar saat ini juga terbatas hanya untuk mengendalikan robot yang sudah dibuat sehingga tidak bisa diaplikasikan ke robot yang lain. Sistem interface yang dirancang ini akan membentuk visualisasi 3D dari robot dengan sendi-sendi yang secara dinamis bisa dikendalikan, sehingga bisa diaplikasikan ke robot mana saja dengan syarat tertentu. Sistem ini di buat dengan bahasa pemrograman Java yang memanfaatkan teknologi 3D. Dengan sistem yang dibuat ini akan bisa menampilkan simulasi gerakan dari si robot sebelum di perintahkan ke mikrokontroler yang disimulasikan rangkaiannya dengan program proteus.

The development of robotics technology have created a higher quality of human life. In the current robot technology, interfacing to control the robot can be a separate issue, because no visualization in the form of simulation and robot movement, currently the robot controller interface programs is limited only to control a robot that has been made so can't be applied to other robot. This interface system is designed to form a 3D visualization of the robot with dynamic joints that can be controlled, so this system can be applied to any robot with particular specification. This system develop using Java programming language that uses 3D technology. With this system will do simulation movement of robot before sending command to microcontroller that the schematic simulated using application name proteus."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51297
UI - Skripsi Open  Universitas Indonesia Library
cover
Bari Krisna
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
R. Novano Arya Wiraraja
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2005
TA435
UI - Tugas Akhir  Universitas Indonesia Library
cover
Galfany Arian
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
TA438
UI - Tugas Akhir  Universitas Indonesia Library
cover
Universitas Indonesia, 2009
TA1068
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>