Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 72924 dokumen yang sesuai dengan query
cover
Luky Christian
"Seiring dengan Instruksi Presiden baru-baru ini mengenai penghematan energi, maka perlu dilakukan upaya-upaya untuk mendukung program ini. Dalam penghematan energi di sektor rumah tangga dapat dilakukan dengan berbagai cara dari hal terkecil mematikan lampu yang tidak diperlukan sampai pada pemanfaatan limbah kalor dari pendingin ruangan untuk keperluan air panas, yang dikenal dengan nama Air Conditioning Water Heater (ACWH). ACWH menggunakan prinsip heat recovery dengan memindahkan kalor dari refrigeran untuk menghasilkan air panas dengan bantuan alat penukar kalor. Sistem ini sangat cocok diaplikasikan pada apartemen tempat tinggal. Sistem ACWH yang sudah ada saat ini masih perlu pengembangan lagi karena masih belum optimal. Efisiensi yang rendah, temperatur air panas yang dihasilkan masih cukup rendah, waktu pemanasan yang cukup lama, temperatur evaporator yang belum maksimal adalah beberapa kekurangan yang ada pada sistem ACWH saat ini.
Tujuan pengujian ini adalah memaksimalkan kinerja sistem ACWH menggunakan penukar kalor tipe plat yang memiliki efektivitas paling tinggi dibandingkan penukar kalor jenis lainnya. Pengujian meliputi variasi debit aliran air dan variasi beban pendinginan.
Dari hasil pengujian didapatkan temperatur air panas maksimum sebesar 44°C dengan debit aliran air 50L/jam dan beban pendinginan 2600W secara open loop. Hasil penelitian ini diharapkan dapat menjadi solusi krisis energi yang terjadi akhir-akhir ini. Selain itu sistem ACWH juga ramah lingkungan dan dapat mengurangi pemanasan global karena tidak mengkonsumsi energi dan memanfaatkan panas buang sebagai sumber energinya.

As the government's instruction about energy savings, some efforts need to be done to succeed this program. In household areas, energy savings can be done by so many ways, from turning off unuseful lamps until utilizing waste heat from refrigeration system to produce hot water which is known as Air Conditioning Water Heater (ACWH). ACWH is a heat recovery system that utilizes waste heat from refrigerant to produce hot water simultaneously through of a heat exchanger which is very suitable to be implemented at residence apartments. The existing ACWH system needs to be developed to reach an optimum result. Some problems of ACWH systems nowadays are low efficiency, insufficient hot water temperature, long period of heating, and increasing of evaporator temperature.
The objective of this research is to maximize the performance of ACWH using Plate Heat Exchanger which has highest efficiency among all type of heat exchanger. The water flowate and cooling load are variables to be tested.
The result of ACWH system shows that the system with 2600W of cooling load can produce 50L/hr hot water with 44°C temperature in open loop method. May the result of this research can help mankind solve the energy crisis nowadays. ACWH can also reduce the global warming as it consumes no additional energy and utilizes waste heat as its energy source.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S50719
UI - Skripsi Open  Universitas Indonesia Library
cover
"Pertumbuhan ekonomi, perubahan standar dan pola hidup membuat kebutuhan energi juga merangkak dengan cepat. Energi merupakan faktor pendukung bagi keberlangsungan mahluk hidup, sehingga usaha penghematan energi sangatlah penting. Salah satunya contoh usaha konservarsi energi adalah penggunaan energi dengan lebih efisien, yang antara lain diaplikasikan dalam Split Air Conditioner Water Heater (S-ACWH). S-ACWH merupakan produk teknologi yang mampu menghasilkan air panas dengan memanfatkan energi panas yang terbuang dari AC (Air Conditioner). Pada penelitian dikembangkan sistem Split Air Conditoning Water Heater dengan menggunakan alat penukar kalor tipe plat, yakni suatu alat penukar kalor yang dikategorikan sebagai alat penukar kalor yang kompak sehingga diperkirakan cocok untuk ditempatkan di apartemen-apartemen yang memiliki ruang yang terbatas dan dapat pula menghemat konsumsi energi. Pada penelitian ini digunakan AC dengan daya 1 PK dan pengujian dilakukan pada unjuk kerja alat penukar kalor PHE serta dibandingkan dengan kemampuan alat penukar kalor tipe koil yang telah dikembangakan sebelumnya. Hasil penelitian menunjukkan air panas yang dihasilkan dapat mencapai temperatur maksimum 57 oC dan efektifitas termal alat penukar kalor berkisar 73% - 85%.

Economic growth, the change of life standard and life style generate also the rising of energy demand faster. Energi is a factor in supporting of humans living. Therefore saving energi or energi conservation is really important. One of energi conservation ways is using energi efficiently; in this case Split Air Conditioner Water Heater (S-ACWH) is an example in using energi efficiently. S-ACWH is a system that can produce warmed water by using waste heat from the split air conditioner (AC). In this research, Split Air Conditioner Water Heater (S-ACWH) was developed which is utilized plate heat exchanger that is categorized as compact heat exchanger. The S-ACWH with plate heat exchanger is predicted suitable for apartments which have small space. Split Air Conditioning with 1 PK has been used in this research then the performance of Plate heat exchanger is tested and the results were compared with previous results of triple coil heat exchangers. The result of the experiment showed that the temperature of hot water could reach 57oC and the thermal effectiveness of heat exchangers are around 73% - 85%."
Depok: Fakultas Teknik Universitas Indonesia, 2007
JUTE-21-4-Des2007-274
Artikel Jurnal  Universitas Indonesia Library
cover
Muhammad Afif Haszaldy
"Kinerja perpindahan panas pada heat exchanger dapat ditingkatkan dengan mengurangi hidrolik diameter dan juga menggunakan fluida kerja yang memiliki konduktivitas termal lebih baik daripada konvensional (air) satu. Salah satu contoh aplikasi diameter hidrolik kecil penukar panas microchannel (MCHE). Merancang MCHE dan melakukan eksperimen investigasi kinerja transfer panas pada counter-flow MCHE dengan menambahkan nomor piring dan menggunakan air dan nanofluid SnO2-air dengan konsentrasi nanopartikel 1%, 3 sebagai cairan pendingin telah dilakukan dalam percobaan ini. Suhu fluida inlet di sisi panas dan dingin ditetapkan pada 50°C dan 25°C, sedangkan laju alir masuk diatur 100-300 ml / menit itu.
Hasil percobaan menunjukkan bahwa peningkatan jumlah pelat dan juga menambahkan nanopartikel konsentrasi dalam cairan dasar dapat meningkatkan kinerja transfer panas. Dalam jumlah tertinggi dari pelat dengan konsentrasi nanopartikel digunakan dalam penelitian ini, SnO2 air 1% nanofluid dapat menyerap panas lebih baik daripada air konvensional dilakukan dan dapat meningkatkan perpindahan panas keseluruhan koefisien MCHE lebih tinggi daripada air.

The heat transfer performance in heat exchanger can be enhanced by decreasing its hydraulic diameter and also using working fluid that has better thermal conductivity than the conventional (water ) one. One of the examples of small hydraulic diameter application is microchannel heat exchanger (MCHE). Designing the MCHE and doing experimental investigation of the heat transfer performance on counter-flow MCHE by adding the number of plate and using water and SnO2-water nanofluid with nanoparticle concentration 1%, 3 as coolant fluid has been done in this experiment. Inlet fluid temperatures in hot and cold side are set at 50°C and 25°C, meanwhile the inlet flow rate is set from 100 to 300 ml/minute.
The experimental results show that the increase number of plate and also adding nanoparticle concentration in the base fluid can enhance its heat transfer performance. In highest number of plate with concentration of nanoparticle used in this experiment, SnO2-water 1% nanofluid can absorb heat better than conventional water do and can enhance the overall heat transfer coefficient of MCHE higher than water.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47605
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahlul Halli
"Penanganan beban thermal pada dunia industri sangat diperlukan. Sistem alat penukar kalor bisa dikembangkan pada sisi fluida yang digunakan dan desain pipa yang digunakan. Respon dalam bidang thermal adalah maraknya kembali perhatian akan pentingnya alat penukar kalor (heat exchanger). Sebuah alat penukar kalor yang baik harus ditunjang oleh koefesien perpindahan panas yang baik. Koefesien perpindahan panas sendiri di pengaruhi oleh bilangan Reynolds. Dalam penelitian ini, dilakukan rancang bangun sebuah alat penukar kalor tipe double pipe dengan variasi pada pipa air panas, dimana pada pipa luar adalah pipa baja karbon memiliki koefisien perpindahan kalor konduksi 54 W/m.K dan memiliki dimensi panjang pipa 1 m, diameter luar (Ø out) 88.6 mm, dan diameter. dalam (Ø in) 85 mm dan pipa dalam adalah pipa baja karbon memiliki koefisien perpindahan kalor konduksi 54 W/m.K dan memiliki dimensi panjang pipa 1.2 m, diameter luar (Ø out) 30 mm, dan diameter dalam (Ø in) 28 mm. Bedasarkan pengujian didapatkan grafik kenaikan nilai koefisien perpindahan kalor sebanding dengan kenaikan bilangan Reynolds. Profil kotak memiliki nilai koefisien perpindahan panas yang lebih tinggi jika dibandingkan dengan profil bulat. Pada perbedaan jenis aliran sangat berpengaruh terhadap nilai koefisien perpindahan kalor profil bulat, sedangkan pada profil kotak tidak begitu terlihat perbedaannya.

Handling of thermal load on the industrial world is indispensable. Heat exchanger system can be developed on the side of the fluid used and the design of pipe used. Response in the thermal field is widespread concern about the importance of reheat exchanger (heat exchanger). A good heat exchanger must be supported by a good heat transfer coefficient. Heat transfer coefficient itself is influenced by the Reynolds number. In this study, carried out design and construction of an appliance type double pipe heat exchanger with a variation on the hot water pipes, where the outer pipe is carbon steel pipe has a conduction heat transfer coefficient of 54 W / mK and has dimensions of 1 m length of pipe, outer diameter (Ø out) 88.6 mm, and diameter in (Ø in) 85 mm and pipe in carbon steel pipe is a conduction heat transfer coefficient of 54 W / mK and has dimensions of 1.2 m length of pipe, outer diameter (Ø out) 30 mm, and diameter in (Ø in) 28 mm. Based on the obtained testing the graph increases the heat transfer coefficient is proportional to the increase in Reynolds number. Profiles box has a heat transfer coefficient values are higher if compared to the rounded profile. In different types of flow greatly affect the heat transfer coefficient value rounded profile, whereas the profile box is not so pronounced.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1699
UI - Skripsi Open  Universitas Indonesia Library
cover
Universitas Indonesia, 2005
TA676
UI - Tugas Akhir  Universitas Indonesia Library
cover
Bagus Fadhlurrohman
"Sistem pendingin dan pemanas banyak digunakan khalayak umum. Ini membuat penggunaan energi yang tinggi disertai dengan efek pemanasn global.
Solusi dari permasalahan ini ialah menggabungkan kedua sistem tersebut dimana panas hasil pendinginan akan digunakan untuk memanaskan. Salah satunya untuk memanaskan air. Komponen yang berperan penting ialah heat exchanger, dalam penulisan ini dipilih Shell and Tube dikarenakan kapasitas besar dan perawatan yang mudah.
Didapatkan dari hasil analisa pada sistem ideal bahwa kapasitas pemanasan paling tinggi ialah ketika temperatur kerja AC 20oC dengan nilai 2,9 kW dengan waktu pemanasan 31 menit 18 detik dan untuk paling rendah pada temperatur kerja AC 25oC dengan nilai 2,8 kW dengan waktu pemanasan 32 menit 30 detik.

Cooling and heating systems are widely used by public. This makes high energy usage accompanied by a global heating effect.
The solution to this problem is to combine the two systems where the heat from the cooling will be used for heating. One of them is to heat water. The component that plays an important role in the heat exchanger. In this paper, Shell and Tube was chosen because of its large capacity and easy maintenance.
It is obtained from the analysis on the ideal system that the highest heating capacity is when the AC working temperature is 20oC with a value of 2,9 kW with a heating time of 31 minute 18 seconds and for the lowest in 25oC of AC working temperature with a value of 2,8 kW with a heating time of 32 minute 30 seconds.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anugrah H.
"Pada penelitian ini akan dipaparkan sebuah model penyelesaian secara numerik menggunakan MATLAB R2009a pada sebuah microchannel heat exchanger type evaporator, diameter hidrolik 1.46 mm dengan desain fin-louvered dan memiliki header. Microchannel heat exchanger merupakan salah satu teknologi terkini pada AC (Air Conditioning) yang mampu memberikan kinerja dan daya perpindahan kalor yang sangat besar. Model persamaan numerik yang digunakan merupakan persamaan yang telah digunakan pada penelitian penelitian sebelumnya dan akan diterapkan pada microchannel heat exchanger untuk menghitung besarnya nilai heat transfer coefficient yang menggunakan fluida refrijeran berupa propane ( ). Simulasi ini akan melakukan variable pada laju aliran massa refijeran dan diperoleh bahwa besarnya laju aliran massa fluida refrijeran akan berbanding lurus dengan besarnya heat transfer coefficient pada microchannel heat exchanger. Besarnya heat transfer coefficient pada laju aliran massa fluida refijeran 0.005 kg/s, 0.01 kg/s dan 0.02 kg/s berturut turut nilai heat transfer coefficient mencapai 335.7 ? 4059.4 W/m2 K, 335.6 ? 4020.6 W/m2 K, 335.3 ? 3965.9 W/m2 K. Adapun kualitas fluida refrijeran yang dihasilkan pada laju aliran massa refijeran tersebut adalah berturut turut 0.2664 ? 0.7571, 0.2653 ? 0.7560, 0.2647 ? 0.7541. Untuk laju aliran massa fluida refijeran yang sama pula diperoleh bahwa hubungan wall temperature akan berbanding terbalik.

In this research will be explain a numerical modeling use MATLAB R2009a in a microchannel heat exchanger type evaporator, hydraulic diameter 1.46 mm with fin-louvered design and with header. Microchannel heat exchanger was a recent technology in AC (Air Conditioning) that had high performance and high heat transfer. Numerical modeling used previous equations in last research and will be applied in microchannel heat exchanger to calculate heat transfer coefficient that used refrigeration fluid was propane ( ). This simulation will apply variable in refrigeration fluid mass flow and the result explain that refrigeration fluid mass flow is directly proportional with heat transfer coefficient pada microchannel heat exchanger. Heat transfer coefficient in refrigeration fluid mass refijeran 0.005 kg/s, 0.01 kg/s dan 0.02 kg/s berturut turut nilai heat transfer coefficient mencapai 335.7 ? 4059.4 W/m2 K, 335.6 ? 4020.6 W/m2 K, 335.3 ? 3965.9 W/m2 K and the quality of outlet condition are respectively 0.2664 ? 0.7571, 0.2653 ? 0.7560, 0.2647 ? 0.7541. For the same condition, the result relate inversely proportional with wall temperature."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65071
UI - Skripsi Membership  Universitas Indonesia Library
cover
Candra Damis Widiawaty
"Riset ini bertujuan melakukan analisis prosedur desain dan redesain alat penukar kalor tipe shell and tube dengan CFD pada reboiler turbin mikro bioenergi proto x-2 dan CO2 stripper reboiler PT Pupuk Iskandar Muda. Metode desain dimulai dari kalkulasi manual metode Kern dan konstrain desain pressuredrop di sisi tube harus di bawah 277 Pa. Kemudian dilakukan simulasi 1 fasa SolidWork 2010 dan 2 fasa dengan sofware CFDSof. Metode redesain diawali dari analisis kondisi terpasang dilanjutkan dengan redesain dengan 3 model. Fokus redesain adalah untuk menganalisis korosi pendidihan dengan CFD dan perubahan desain untuk mengurangi fraksi uap.
Eksperimen reboiler turbin dan hasil simulasi menunjukkan peningkatan temperatur pada titik ukur 1 lebih cepat dibandingkan dengan titik ukur 2, sehingga uap lebih dulu terbentuk pada titik ukur 1. Hasil simulasi menunjukkan pembentukan uap mulai terjadi pada jarak 85 mm dari tubesheet. Berdasarkan simulasi 2 fasa, model redesain 2 yaitu posisi outlet shell 880 mm dari tubesheet adalah yang terbaik karena proses pendidihan lebih sedikit yang direpresentasikan oleh pembentukan fraksi uap tertinggi hanya 0,0002. Dengan mengunakan simulasi CFD, desain reboiler CO2 stripper reboiler lebih baik dibandingkan desain reboiler turbin, karena pada reboiler CO2 stripper reboiler penguapan terjadi mendekati outlet sehingga uap lebih lebih mudah keluar.

The aimed of this researched is analized procedure of design and redesign shell and tube heat exchanger used CFD for micro bioenergy gas turbine proto x-2 and CO2 stripper reboiler?s PT Pupuk Iskandar Muda. The design method was started with manual calculation using Kern method and the constrain was pressuredrop exhaust gas must be under 277 Pa. The next step was simulated the model with SolidWork 2010 for one phase and CFDSof for two phase. The method of redesign was previously analized the existing condition and then continued with changed the original model with 3 redesign model which is produced less vapor fraction.
The experiment and simulation of turbine reboiler showed that the temperature of water increasing faster at measuring point 1 than measuring point 2 therefore water vapor started at 85 mm from inlet of exhaust gas. The redesign 2 which is the distance outlet 880 mm from tubesheet was the best design because it's produced the lowest vapor fraction 0,0002. On all the CFD could showed the pendidihan process for both of the reboiler, it showed that the CO2 stripper reboiler design was better than the turbine reboiler because the vaporation was started near the outlet.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
T31064
UI - Tesis Open  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1994
S36312
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yudha Syafei Agustian
"ABSTRAK
Penelitian ini membahas tentang perbandingan koefisien perpindahan kalor aliran
dua fasa dari hasil percobaan dengan hasil prediksi dari korelasi yang terdapat
pada literatur. Percobaan dilakukan pada kondisi perpindahan panas konveksi
didih pada kanal mini horizontal dengan refrigeran R-22. Test section terbuat dari
pipa stainless steel dengan diameter dalam 3 mm, panjang 1000 mm dan
dipanaskan secara merata di sepanjang pipa tersebut dengan heat flux divariasikan
antara 5 kW/m2 sampai dengan 15 kW/m2. Dalam penelitian ini menggunakan
korelasi Chen (1963), korelasi Gungor-Winterton (1986) dan korelsi Zhang et al.
(2004). Selanjutnya koefisien perpindahan kalor dari tiap korelasi dihitung dan
dibandingkan mean deviation dan average deviation-nya terhadap hasil percobaan
untuk mengetahui penyimpangan pada setiap korelasi. Koefisien perpindahan
kalor yang diperoleh dengan menggunakan korelasi Chen memiliki mean dan
average deviaion lebih rendah dibandingkan dengan korelasi lain. Nilai koefisien
perpindahan kalor dipengaruhi oleh heat flux yang diberikan, dimana semakin
besar heat flux yang diberikan maka semakin besar pula nilai koefisien
perpindahan kalornya.

ABSTRACT
This study discusses the comparison of two phase flow heat transfer coefficient of
the experimental results with predicted results from the correlation found in the
literature. Experiments were performed on the convective boiling heat transfer in
horizontal minichannel with R-22. The test section was made of stainless steel
tube with inner diameter of 3 mm, length of 1000 mm and it is uniformly heated
along the tube with heat flux was varied from 5 kW/m2 up to 15 kW/m2. In this
studi using Chen?s correlation (1963), Gungor-Winterton?s correlation (1986) and
Zhang?s correlation (2004). Furthermore, the heat transfer coefficient from each
correlation was calculated and compared with the mean deviation and average
deviation of the experimental results to determine deviations in each correlations.
Heat transfer coefficients obtained by using Chen?s correlation has a mean and
average deviation lower than other correlations. The value of heat transfer
coefficient is affected by the heat flux was given, where the higher value of heat
flux given will result the higher value of heat transfer coefficient."
Fakultas Teknik Universitas Indonesia, 2011
S1798
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>