Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 32740 dokumen yang sesuai dengan query
cover
Nova Taufik Ardianto
"Perkembangan sektor transportasi di Indonesia sangat pesat seiring dengan perkembangan teknologi dunia. Oleh karena itu, kebutuhan bahan bakar minyak khususnya bensin terus meningkat di Indonesia sehingga cadangan minyak bumi yang menjadi bahan utama untuk membuat bensin saat ini diekplorasi secara luas yang menyebabkan terjadinya krisis bahan bakar. Untuk mengatasi hal ini diperlukan sumber alternatif untuk menghasilkan bahan bakar minyak tersebut. Salah satu alternatif untuk mengatasi hal ini adalah pembuatan bensin senyawa turunan dari biomassa yaitu minyak kelapa sawit.
Penelitian ini bermaksud untuk mengembangkan proses perengkahan katalitik untuk memproduksi senyawa hidrokarbon setaraf gasoline dari minyak kelapa sawit dengan mengunakan ZSM-5/Alumina. Reaksi akan dilaksanakan dalam suatu fixed bed reactor yang beroperasi pada tekanan atmosferik. Temperatur reaksi akan dilakukan dari 375 °C sampai dengan 450°C dengan laju alir 10 ml/min.
Penambahan ABE (Aseton, Butanol, dan Etanol) dimaksudkan untuk mengatasi kereaktifan gugus ikatan ester molekul trigliserida agar terjadinya reaksi polycondensation yang mengakibatkan molekul minyak menjadi bertambah besar dapat dihindari dan sebagai menjadi sumber alkil yang akan meningkatkan kualitas produk yang dihasilkan. Produk yang dihasilkan dari proses perengkahan katalitik minyak sawit adalah berupa produk gas, produk cair dan air juga terdapat kokas yang menempel pada katalis. Yield senyawa hidrokarbon setaraf fraksi gasoline yang dihasilkan 89.7641 %.
Tanpa memperhitungkan aspek ekonomis, dapat diketahui suatu kondisi optimum dari pembuatan hidrokarbon setaraf fraksi gasoline, yaitu umpan yang digunakan dengan campuran minyak sawit-ABE dengan perbandingan massa 1 : 1 dan suhu optimal yang didapat adalah 375°C dengan analisa adsorbsi-desorbsi ammonia pada katalis. Keasaman katalis campuran meningkat cukup besar dibandingkan dengan keasaman katalis murni. Reaksi konversi minyak sawit-ABE menjadi gasoline memerlukan keasaman sebagai pemicu reaksi alkilasi dan reaksi perengkahan.

The development of transportation sector in Indonesia is growing very fast along with technolgy development in the world. Because of that, the need for oil fuel especially gasoline keeps growing in Indonesia with the result that crude oil reserves as a main resource to make gasoline is now being explored widely causing the fuel crisis. In order to handle this problem, alternative resorces is needed to produce that oil resources. One of the alternatives to handle this problem is making gasoline derivative compund from biomass, which is crude palm oil.
This research is meant to improve catalytic cracking process to produce hydrocarbon compounds equal with gasoline from crude palm oil using ZSM-5/ alumina. Reaction will be done in fixed bed reactor which operates at atmospheric pressure. Reaction temperature will be done from 375°C until 450°C with volumetric velocity 10 ml/ min.
The addition of ABE (Acetone, Butanol, and Ethanol) is meant to handle ester functional group reactivity triglyceryde molecule for occurance polycondensation reaction which causing oil molecule get larger can be avoided and be the alkyl resource which improving product quality produced. Product that produced from crude palm oil catalytic cracking process forms gas, liquid product and water and also contains coke which adheres to catalyst. The yield of hydrocarbon compound equal to gasoline fraction produced is 89.7641%.
Regardless calculation economical aspect, it can be known an optimum condition of the making hydrocarbon equal gasoline fraction, is the feed used with mixture crude palm oil- ABE using with mass comparison 1 : 1 and optimum temperature 375°C with ammonia adsorption- desorption analysis in catalyst. Acidic characteristic of catalyst mixture increases high enough compared with that of pure catalyst. The conversion reaction crude palm oil- ABE producing gasoline needs acidic characteristic as a trigger of alkylation reaction and catalytic reaction.
"
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49549
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bayu Arifianto
"Bahan bakar minyak merupakan suatu kebutuhan yang sangat penting bagi kehidupan manusia. Bahan bakar minyak yang ada sekarang diperoleh melalui reaksi perengkahan melalui minyak bumi. Tetapi ketergantungan manusia akan bahan bakar fosil perlu dikurangi karena cadangan minyak bumi yang semakin berkurang setiap tahunnya. Karena hal inilah dikembangkan bahan bakar minyak yang didapat melalui proses perengkahan minyak nabati. Salah satu jenis minyak nabati yang banyak terdapat di alam adalah minyak kelapa sawit. Metode perengkahan katalitik merupakan suatu cara untuk memecahkan rantai karbon yang cukup panjang, menjadi suatu molekul dengan rantai karbon yang lebih sederhana, dengan bantuan katalis.
Bantuan katalis ini bertujuan untuk menurunkan suhu dan tekanan pada saat reaksi. Sementara itu, katalis yang digunakan dalam penelitian ini adalah katalis B203/Al203 yang bersifat asam. Penambahan B203 dimaksudkan untuk membentuk spesi peroksida (022-) pada permukaan katalis. Sedangkan Al203 bersifat asam dan sangat baik untuk memutuskan ikatan antar karbon.
Metode yang digunakan dalam menguji hasil reaksi adalah dengan FT-IR, dan GC-FID. Penelitian ini dilaksanakan pada tekanan atmosferik dengan reaktor fixed bed. Berbagai variasi yang akan dilakukan dalam penelitian ini adalah variasi temperatur (350°C, 400°C, 450°C, dan 500°C), kandungan B203 (5%, 10% 15%, 20%, dan 25%) pada katalis dan variasi jenis umpan yang di treatment. Uji aktivasi katalis dengan menggunakan katalis 10% B203/Al203 memberikan hasil yield fraksi bensin terbaik sebesar 58% pada temperatur 450°C dengan umpan POME (Palm Oil Methyl Ester). Ini menunjukkan terjadinya peningkatan keasaman katalis, dan peranan spesi peroksida (O22-) sebagai inti aktif baru."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49573
UI - Skripsi Membership  Universitas Indonesia Library
cover
R. Mailisa F.
"Kebutuhan bensin meningkat seiring dengan meningkatnya kebutuhan kendaraan bermotor. Namun produksi minyak bumi sebagai bahan baku pembuatan bensin menurun setiap tahunnya sehingga perlu dikembangkan sumber alternatif untuk memperoleh bensin. Bensin merupakan campuran senyawa hidrokarbon C5 - C10. Salah satu sumber hidrokarbon adalah biomass, misalnya minyak kelapa sawit. Indonesia merupakan penghasil minyak sawit terbesar kedua di dunia. Perengkahan katalitik minyak sawit menjadi bahan bakar telah berhasil dilakukan. Pada penelitian saat ini akan dipelajari perengkahan katalitik minyak sawit untuk memproduksi senyawa hidrokarbon setaraf bensin. Pengaruh jenis umpan minyak sawit, temperatur reaksi, penambahan aditif pada katalis dalam proses perengkahan dipelajari dengan mengunakan suatu fixed bed reactor yang beroperasi pada tekanan 1.5 kgf/cm2. Umpan yang akan direngkahkan dilakukan preparasi awal terlebih dahulu melalui oksidasi, transesterifikasi dan penambahan metanol. Temperatur reaksi akan dilakukan dari 350°C sampai dengan 500 °C. Aditif yang ditambahkan pada katalis zeolit adalah B2O3 dengan variasi dari 5% sampai 20 % berat. Produk cair hasil reaksi dianalisis GC-FID dan FT-IR. Sedangkan, karakteristik katalis dilakukan untuk melihat perubahan luas permukaan dengan menggunakanBET dan keberadaan B2O3 pada kristal zeolit dianalisis dengan XRD. Penambahan B2O3 menyebabkan menurunnya luas permukaan katalis dan ukuran pori katalis. Penambahan B2O3 optimum adalah 5%. Yield bensin terbaik yaitu 52.5% diperoleh pada temperatur 450 °C, dengan umpan POME dan katalis zeolit alam murni."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49581
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gandi Iswara
"Jumlah konsumsi bensin di Indonesia terus meningkat dari tahun ke tahun. Namun, cadangan minyak bumi di Indonesia yang terus berkurang menuntut untuk ditemukannya sumber energi alternatif pengganti bensin. Telah dipublikasikan sebelumnya bahwa minyak kelapa sawit dapat direngkah menjadi senyawa hidrokarbon melalui reaksi perengkahan katalitik pada fasa' gas menggunakan katalis asam, namun produk yang dihasilkan memiliki yield bensin yang kecil, yaitu 4-20%. Penelitian ini bertujuan untuk memperoleh bensin dari minyak kelapa sawit melalui reaksi perengkahan katalitik pada fasa cair dengan jumlah yield bensin yang tinggi. Minyak kelapa sawit direaksikan dengan katalis H-Zeolit yang dipreparasi dari Zeolit Alam melalui metode pertukaran ion. Reaksi dilakukah dalam fasa cair dengan rasio berat katalis per berat umpan 1:75 di dalam reaktor tumpak berpengaduk. Reaksi dilakukan dengan variasi waktu 1 hingga 2 jam pada suhu 300-320°C. Reaksi yang terjadi adalah reaksi perengkahan katalitik, dimana H-Zeolit merengkah ikatan kimia minyak kelapa sawit menjadi hidrokarbon dengan rantai yang lebih pendek. Agar diperoleh yield bensin yang tinggi, produk reaksi didistilasi secara tumpak sebanyak 2-3 kali. Distilasi dihentikan apabila diperoleh produk yang memenuhi spesifikasi bensin dalam hal titik didih dan densitas. Produk yang memenuhi spesifikasi bensin ini disebut Bensin-Bio. Pada Bensin-Bio, dilakukan analisis GC-MS, angka oktana dan RVP. Berdasarkan hasil penelitian, kondisi optimum reaksi adalah pada reaksi selama 1 jam pada suhu 320°C dan dilanjutkan dengan dua kali distilasi secara tumpak. Produk yang dihasilkan memiliki densitas 0,77 g/mL dan titik didih akhir 255°C. Komposisi Bensin-Bio adalah senyawa hidrokarbon dengan jumlah rantai Ci-Cn , memiliki RVP 48,23 serta angka oktana 122,24. Konversi reaksi adalah 21,56% dan yield bensin sebesar 58%."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49605
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dadi Ahmad Mawardi
"Kenyataan bahwa cadangan minyak bumi dunia yang semakin menipis tidak dapat terelakkan lagi. Dengan kondisi ini memaksa dilakukannya pencarian energi alternatif yang dapat mengurangi beban suplai energi dari basis minyak bumi. Konsumsi bahan bakar bensin di Indonesia terus meningkat tetapi suplai akan bensin tersebut sudah mulai menipis. Minyak kelapa sawit yang dimiliki Indonesia sangat melimpah, dapat dijadikan sebagai sumber bahan bakar bensin. Minyak kelapa sawit mengandung trigeliserida yang mengikat asam lemak jenuh maupun tak jenuh, salah satunya asam oleat yang kandungannya sangat besar mencapai 43%.
Secara teoritis, ikatan rangkap pada asam lemak tak jenuh trigliserida dapat terengkah dengan menggunakan katalis asam salah satunya katalis ?-alumma. Penelitian ini dilakukan dengan mereaksikan minyak sawit dengan katalis ?-alumina di dalam reaktor tumpak berpengaduk. Untuk mendapatkan kondisi yang optimum maka dilakukan variasi perbandingan berat minyak/katalis 100:1, 75:1 dan 50:1, suhu reaksi 260-340°C dan waktu reaksi 1-2 jam.
Dari hasil uji densitas dan viskositas dan FTIR maka diperoleh kondisi optimum sebagai berikut : perbandingan berat minyak/katalis 100:1, waktu reaksi 1.5 jam dan suhu 340°C. Untuk mendapatkan produk biogasoline, dilakukan distilasi tumpak secara bertahap sebanyak dua kali untuk ketiga produk reaksi yang terbaik dari masing - masing perbandingan berat minyak/katalis. Identifikasi produk biogasoline dengan analisis densitas dan viskositas menunjukkan hasil yang mendekati bensin komersial. Dari uji FTIR, uji GC dan uji GC-MS menunjukkan adanya kemiripan kandungan produk biogasoline dengan kandungan bensin komersial dengan yield 11.79% v/v) dan konversi 28% (v/v)terhadap umpan minyak sawit dan bilangan oktana 61."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49579
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Adam Hirsaman
"Pesatnya pembangunan di bidang transportasi berimplikasi pada meningkatnya kebutuhan akan bensin (gasoline). Peningkatan ini tidak sejalan dengan cadangan minyak bumi dunia sebagai bahan baku utama pembuatan bensin yang terus menurun. Ini menyebabkan urgensi kebutuhan akan bensin dari bahan baku altelnatif yang terbarukan semakin meningkat dari waktu ke waktu. Minyak sawit, merupakan salah satu bahan yang disebut-sebut dapat digunakan untuk menghasilkan alternatif bensin (biogasoline). Pada penelitian ini biogasoline disintesis dari minyak sawit melalui reaksi hydrocracking dengan katalis NiMo/zeolit yang merupakan katalis pada proses hydrocracking minyak bumi. Penelitian dilakukan dengan mereaksikan minyak sawit dalam reaktor batch berpengaduk bersama katalis NiMo/zeolit dan gas hidrogen. Perbandingan berat katalis/reaktan yang digunakan adalah 1:75. Gas hidrogen dialirkan dengan laju alir rendah pada suhu ruang. Reaksi dilakukan pada tekanan atmosferik dengan 2 variasi suhu, yaitu 300°C dan 320°C masing-masing selama 1 jam, 1.5 jam, dan 2 jam. Penurunan densitas produk reaksi terhadap densitas minyak sawit, penambahan jumlah gugus -CH3, dan pengurangan gugus -C=C- yang ditunjukkan oleh spektrum FTIR, menunjukkan bahwa reaksi hydrocracking yang diinginkan pada penelitian ini memang benar terjadi. Untuk mendapatkan produk biogasoline, dilakukan distilasi batch secara bertahap sebanyak dua kali untuk masing-masing produk reaksi. Pengukuran densitas produk biogasoline menunjukkan hasil yang mendekati densitas bensin komersial. Uji GC dan GC-MS menunjukkan adanya kemiripan kandungan produk biogasoline dengan kandungan bensin komersial. Namun demikian masih terdapat kandungan senyawa yang tidak termasuk dalam fraksi bensin dalam proporsi yang cukup besar sehingga produk biogasoline yang didapatkan ini belum dapat digunakan untuk menggantikan bensin. Ini ditunjukkan oleh bilangan oktan produk biogasoline yang jauh lebih kecil dibanding standar bilangan oktan bensin komersial. Untuk mendapatkan produk biogasoline yang memenuhi kriteria bensin, diperiukan proses pemisahan lebih lanjut untuk memisahkan fraksi berat tersebut."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49559
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Yulianto
"Pemanfaatan biodiesel sawit diselidiki memiliki masalah dengan sifat aliran dingin terutama di daerah dataran tinggi yaitu titik kabut tinggi karena tingginya kadar asam lemak jenuh. Di sisi lain, minyak mikroalga memiliki titik kabut yang rendah karena tingginya tingkat asam lemak tak jenuh. Sementara itu, densitas dan kadar air biodiesel yang terlalu tinggi akan mempengaruhi kinerja mesin. Oleh karena itu, kombinasi sifat tak jenuh tunggal dan jenuh, maupun perbedaan densitas antara minyak kelapa sawit dan minyak mikroalga membuatnya lebih disukai sebagai campuran bahan baku untuk meningkatkan kualitas Biodiesel. Penelitian ini memformulasikan pencampuran minyak mikroalga Nannochloropsis sp (MO1) dan/atau minyak mikroalga Chlorella vulgaris (MO2) terhadap minyak sawit (PO). Skema pencampuran minyak dilakukan dengan 4 variasi yaitu perbandingan massa 0:30 (MO:PO); 1:30 (MO1:PO); 1:30 (MO2:PO); 1:1:30 (MO1:MO2:PO).Transesterifikasi terjadi pada 65°C dengan penambahan katalis KOH dengan perbandingan minyak : metanol (1 : 15) : @250 mL selama 1,5 jam. FAME dianalisis berdasarkan SNI 7182:2015 dengan tiga parameter utama diantaranya kadar air (ASTM D6304), densitas (ASTM D1298), dan titik kabut (ASTM D2500). Berdasarkan penelitian yang dilakukan dari semua variasi menunjukkan bahwa hasil terbaik yang direkomendasikan adalah komposisi campuran minyak mikroalga Chlorella vulgaris terhadap minyak sawit dengan parameter densitas dan titik kabut masing – masing sebesar 859,3 kg/m3 dan 11,7°C (sesuai SNI), meskipun parameter kadar air masih tinggi sebesar 973,4 mg/kg (tidak sesuai SNI).

Utilization of palm biodiesel is investigated having problems with the cold flow properties particularly in the high-altitude areas. A common problem of biodiesel is the high cloud point due to high levels of saturated fatty acids. On the other hand, microalgae oil has a low cloud point due to high levels of unsaturated fatty acids. Meanwhile, the density and moisture content of biodiesel that is too high will also affect engine performance. Therefore, the combination of monounsaturated and saturated properties, as well as differences in density between palm oil and microalgae oil make it preferred as a mixture of raw materials to improve the quality of Biodiesel. This research formulated the mixing of Nannochloropsis sp (MO1) microalgae oil and/or Chlorella vulgaris (MO2) microalgae oil to palm oil (PO). The oil mixing scheme is carried out with 4 variations namely mass ratio 0:30 (MO: PO); 1:30 (MO1: PO); 1:30 (MO2: PO); 1: 1: 30 (MO1: MO2: PO). The transesterification occurred at 65°C with the addition of KOH catalyst with oil : methanol (1 : 15) : @250 mL during 1,5 hours. The FAMEs were analysis according to SNI 7182:2015 with three main parameters including water content (ASTM D 6304), density (ASTM D1298), and cloud point (ASTM D 2500). Based on research conducted from all variations shows that the best results recommended are the composition of a mixture of Chlorella vulgaris microalgae oil to palm oil with the density and fog point parameters respectively 859.3 kg/m3 and 11.7 °C (according SNI), although the water content parameter is still high at 973.4 mg/kg (not according SNI)."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Benny Augustian Wijaya
"Perkembangan kendaraan bermotor yang semakin pesat, memicu naiknya konsumsi bensin di dunia. Namun naiknya konsumsi tidak diimbangi dengan naiknya produksi. Cadangan minyak bumi di dunia yang kian menipis menyebabkan perlu adanya sumber lain yang dapat diperbaharui untuk diolah menjadi hidrokarbon setaraffraksi gasoline. Minyak sawit (CPO) dipilih untuk dijadikan sumber baru dalam pembuatan gasoline karena CPO memiliki struktur rantai karbon yang dapat dikonversi dan diolah menjadi hidrokarbon setaraffraksi gasoline dengan metode perengkahan. Metode perengkahan pada penelitian ini dilakukan secara katalitik dengan menggunakan katalis ZSM-5/Alumina. Katalis alumina digunakan untuk merengkahkan struktur karbon yang panjang dari minyak sawit dan ZSM-5 digunakan sebagai aditif karena katalis ini merupakan katalis sintetik dengan keasaman yang sangat tinggi, sehingga sangat baik digunakan untuk reaksi perengkahan. Namun jumlah katalis ZSM-5 yang dipakai hanya sebagai aditif karena konsentrasi ZSM-5 yang tinggi akan menyebabkan produk reaksi perengkahan menjadi gas C2-C4 dan bukan produk bensin. Reaksi ini dilakukan pada fixed bed reactor sederhana. Umpan yang akan direngkahkan dipreparasi terlebih dahulu dengan cara oksidasi, transesterifikasi dan penambahan metanol. Temperatur reaksi akan dilakukan dari 350 °C sampai dengan 500 °C dengan space velocity 1,8 h-1 . Selain itujuga akan dilakukan variasi berat HZSM-5 dari 5 sampai 20 % berat total katalis. Metode yang digunakan dalam menguji hasil reaksi adalah GC-TCD dan FT-IR. Hasil reaksi dengan umpan POME menghasilkan yield tertinggi pada komposisi ZSM-5/Alumina 5 % yaitu sebesar 63,1 % pada saat temperatur reaksi sebesar 400 °C. Untuk reaksi dengan umpan minyak yang ditambah metanol, juga didapatkan yield tertinggi sebesar 26,75 % pada kondisi reaksi yang sama (temperatur reaksi 400 °C; 5 % berat H-ZSM-5 dalam katalis)."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49540
UI - Skripsi Membership  Universitas Indonesia Library
cover
Prayoga Agusto Haradi
"Biodiesel merupakan salah satu alternatif sumber energi dengan berbagai keunggulan dibandingkan dengan diesel konvensional. Sebelum dapat dipakai dalam mesin konvensional, standar biodiesel harus dipenuhi berdasarkan Standar Nasional Indonesia (SNI), terutama dalam konsentrasi gliserol pada biodiesel. Beberapa metode telah dilakukan dalam proses separasi gliserol dari biodiesel, antara lain adalah water washing, dry washing, dan separasi membran. Namun, metode pembersihan tersebut memiliki beberapa kelemahan yang membuat proses separasi gliserol menjadi tidak optimum. Alternatif yang dapat digunakan dalam separasi gliserol pada biodiesel adalah dengan menggunakan deep eutectic solvent (DES). DES adalah campuran sederhana dari suatu garam dan suatu senyawa Hidrogen Bond Donor (HBD) yang terhubung satu sama lain melalui ikatan hidrogen. Pada penelitian ini, 2 tipe biodiesel berbasis minyak sawit akan DES dibuat dengan mencampurkan garam kolin klorida dan HBD etilen glikol pada rasio molar 1:2. DES kemudian akan ditambahkan kedalam biodiesel yang terbentuk dengan rasio molar biodiesel:DES 1:1 dan 1:0,5 untuk mengekstraksi kadar gliserol bebas dan total dari biodiesel. Penelitian ini juga menelusuri keefektifan dari penggunaan DES untuk dipakai ulang sebanyak 5 kali untuk mengekstraksi gliserol dari batch biodiesel baru. Hasil penelitian menunjukkan bahwa pemisahan gliserol bebas dan gliserol total dari biodiesel menggunakan DES kolin klorida dan etilen glikol dengan rasio molar biodiesel:DES 1:1 adalah 0% berat untuk gliserol bebas dan 0,041% berat untuk gliserol total pada biodiesel gliserol rendah dan 0% berat untuk gliserol bebas dan 0,052% berat untuk gliserol total. Sedangkan untuk rasio molar biodiesel:DES 1:0,5 adalah 0% berat untuk gliserol bebas dan 0,052% berat untuk gliserol total pada biodiesel gliserol rendah dan 0% berat untuk gliserol bebas dan 0,041% berat untuk gliserol total. Penelitian juga menunjukkan bahwa DES kolin klorida dan etilen glikol untuk rasio molar biodiesel:DES 1:0,5 pada pemakaian DES kedua, kadar gliserol bebas dan total rendah 0,014% dan 0,052% berat untuk biodiesel gliserol rendah, 0,021% dan 0,052% berat untuk biodiesel gliserol tinggi. Untuk rasio biodiesel:DES 1:1 pada pemakaian DES ketiga, kadar gliserol bebas dan total rendah 0,007% dan 0,104% berat untuk biodiesel gliserol rendah, 0,014% dan 0,093% berat untuk biodiesel gliserol tinggi. Setelah pemakaian kedua untuk rasio molar biodiesel:DES 1:0,5 dan pemakaian ketiga untuk rasio 1:1, DES sudah tidak efektif dalam mengekstraksi gliserol pada biodiesell

Biodiesel is an alternative energy source with many advantages over conventional diesel. Before it can be used in conventional engines, biodiesel standards must be met based on the Indonesian National Standard (SNI), especially in the concentration of glycerol in biodiesel. Several methods have been used to separate glycerol from biodiesel, including water washing, dry washing, and membrane separation. However, these cleaning methods have several disadvantages that make the glycerol separation process not optimal. An alternative that can be used in the separation of glycerol in biodiesel is to use deep eutectic solvent (DES). DES is a simple mixture of a salt and a Hydrogen Bond Donor (HBD) compound connected to each other through hydrogen bonds. In this study, two types of palm oil-based biodiesel will be made with DES by mixing ChCl salt and ethylene glycol HBD at a molar ratio of 1:2. DES will then be added to the biodiesel with a biodiesel:DES molar ratio of 1:1 and 1:0.5 to extract the free and total glycerol content of the biodiesel. This study also explored the effectiveness of using DES to be reused 5 times to extract glycerol from a new batch of biodiesel. The results showed that the separation of free and total glycerol from biodiesel using DES choline chloride and ethylene glycol with a biodiesel:DES molar ratio of 1:1 was 0% weight for free glycerol and 0.041% weight for total glycerol in low glycerol biodiesel and 0% weight for free glycerol and 0.052% weight for total glycerol. The molar ratio of biodiesel:DES 1:0.5 was 0% weight for free glycerol and 0.052% weight for total glycerol in low glycerol biodiesel and 0% by weight for free glycerol and 0.041% weight for total glycerol. The study also showed that choline chloride and ethylene glycol based DES for biodiesel:DES with a molar ratio of 1:0.5 in the second DES application, the free and total glycerol content was low at 0.014% and 0.052% weight for low glycerol biodiesel, 0.021% and 0.052% by weight for high glycerol biodiesel. For the biodiesel:DES ratio of 1:1 at the third application of DES, the free and total glycerol content was low at 0.007% and 0.104% weight for low glycerol biodiesel, 0.014% and 0.093% weight for high glycerol biodiesel. After the second application for biodiesel:DES molar ratio of 1:0.5 and the third application for 1:1 ratio, DES was no longer effective in extracting glycerol from biodiesel."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ari Kabul Paminto
"Indonesia masih menjadi importir energi terutama dalam bentuk minyak mentah dan produk BBM. Berkurangnya produksi energi fosil dan komitmen pengurangan emisi gas rumah kaca, mendorong pemerintah Indonesia untuk mendukung peran energi baru dan terbarukan. Produksi biodiesel berbasis minyak sawit dihadapkan pada sejumlah masalah lingkungan dari pelepasan emisi. Tujuan penelitian ini adalah menyusun LCI produksi biodiesel, menganalisis dampak lingkungan yang meliputi emisi CO2(eq), acidification dan eutrophication dan menyusun konsep daur hidup produksi biodiesel dari minyak sawit. Metode penelitian ini yaitu kuantitatif (LCA-AHP) dan kualitatif. Hasil dari penelitian ini adalah LCI dalam 1 ton biodiesel terdiri dari tandan buah segar 5,67 ton, CPO 1,17 ton dan POME 3,47 m3. Total emisi CO2(eq) sebesar 1489 Kg CO2(eq), eutrophication 1,115 Kg PO43(eq) dan acidification 3,058 Kg SO2(eq). Konsep daur hidup produksi biodiesel dapat diterapkan dengan pemanfaatan limbah POME.

Indonesia is still an energy importer, especially in the form of crude oil and fuel products. Reducing fossil energy production and commitments to reduce greenhouse gas emissions encourage the Indonesian government to support the role of new and renewable energy. The production of palm oil-based biodiesel is faced with several environmental problems from releasing emissions. The purpose of this study was to develop LCI for biodiesel production, analyze environmental impacts including CO2(eq), acidification and eutrophication emissions and develop a life cycle concept for biodiesel production from palm oil. This research method is quantitative (LCA-AHP) and qualitative. The results of this study are LCI in 1 ton of biodiesel consisting of 5.67 tons of fresh fruit bunches, 1.17 tons of CPO; and POME 3.47 m3. The total emission of CO2(eq) is 1489 Kg CO2(eq), eutrophication 1.115 Kg PO43-(eq) and acidification 3.058 Kg SO2(eq). The concept of a biodiesel production life cycle can be applied by utilizing POME waste."
Jakarta: Sekolah Ilmu Lingkungan Uiniversitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>