Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 59533 dokumen yang sesuai dengan query
cover
Heru Wijaya Pamungkas
Depok: Fakultas Teknik Universitas Indonesia, 1992
S48652
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yundit Harum Hermawan
Depok: Fakultas Teknik Universitas Indonesia, 1998
S49049
UI - Skripsi Membership  Universitas Indonesia Library
cover
Laode Sulaiman
Depok: Fakultas Teknik Universitas Indonesia, 1996
S48918
UI - Skripsi Membership  Universitas Indonesia Library
cover
Harry Zulfikar
Depok: Fakultas Teknik Universitas Indonesia, 1998
S49246
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pangabean, Odina Melda K.
"Senyawa ester dapat disintesis dengan cara mereaksikan langsung
suatu asam karboksilat dengan suatu alkohol. Salah satu senyawa yang termasuk
asam karboksilat adalah asam p-hidroksi benzoat. Asam p-hidroksi benzoat
merupakan senyawa fenolik sangat efektif sebagai antioksidan.
Reaksi esterifikasi membutuhkan energi aktivasi yang tinggi dan
waktu yang lama sehingga dibutuhkan katalis. Katalis yang biasa digunakan
adalah katalis homogen. Namun, katalis homogen menimbulkan masalah dalam
proses pemisahan produk dan tidak ramah lingkungan. Pada penelitian ini
dilakukan reaksi esterifikasi asam p-hidroksi benzoat dengan dua reaktan, etilen
glikol dan gliserol menggunakan dua jenis katalis heterogen asam yaitu y-
Al2O3/SO42 dan y-Al2O3/CIO4. Dimana katalis y-Al2O3/SO4² disintesis dari
scrap aluminium sedangkan katalis y-Al2O3/ClO4 dari hasil regenerasi katalis
bekas y-Al2O3 yang diperoleh dari industri. Pelarut yang digunakan adalah DMSO
dimana suhu reaksi sebesar 100°C. Produk esterifikasi dianalisis menggunakan uji
KLT, HPLC dan FT-IR.
Produk ester yang dihasilkan merupakan campuran antara α, Y-ester
dan ẞ-ester. Pada waktu 24 jam reaksi untuk katalis y-Al2O3/SO4² etilen glikol
menghasilkan % konversi asam terhadap produk ester sebesar 91,12% sedangkan
gliserol 100%. Sedangkan untuk katalis y-Al2O3/ClO4¯ etilen glikol menghasilkan
sebesar 71,13% sedangkan gliserol 100%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S30696
UI - Skripsi Open  Universitas Indonesia Library
cover
"Etil oleat diperoleh dengan mereaksikan asam oleat dan etanol pada kondisi tertentu selama 8 jam. Kopolimerisasi dilakukan dengan mereaksikan kembali etil oleat dengan etilen glikol secara batch menggunakan katalis zeolit ZSM-5. Hasil reaksi dipelajari dengan melihat pengaruh pada suhu (160oC sampai dengan 200 oC) dan rasio reaktan (1 : 3 dan 1 : 6 mol). Hasil reaksi dipelajari dengan melihat secara kualitatif (FT-IR) untuk mengetahui struktur yang diperoleh pada reaksi ini. Hasil penelitian menunjukkan bahwa suhu, rasio reaktan, dan waktu reaksi mempengaruhi berat molekul dan restukturisasi dari molekul ester. Hasil terbaik diperoleh pada rasio reaktan 1 : 6 mol, suhu 200 oC waktu reaksi 5 jam. Semakin banyak monomer alkoholis ditambahkan pada suhu reaksi yang tinggi akan mempercepat reaksi kompolimerisasi dan memiliki berat molekul yang besar."
MPI 8:2 (2005)
Artikel Jurnal  Universitas Indonesia Library
cover
Francina Nacosia
Depok: Fakultas Teknik Universitas Indonesia, 1999
S49192
UI - Skripsi Membership  Universitas Indonesia Library
cover
Retno Ayu Pratiwi
"Telah dilakukan reaksi oksidasi katalitik isoeugenol menjadi vanili dengan penggunaan katalis γ-Al2O3-TiO2. Sebagai langkah awal, katalis heterogen γ-Al2O3-TiO2 dipreparasi dengan mereaksikan larutan Al2(SO4)3 dan larutan NH4OH sampai terbentuk boehmite. Boehmite kemudian ditambahkan Ti(OH)4 dengan metode sol-gel dari hidrolisis Titanium Tetraisopropoksida (TTIP) dengan H2O dan HNO3 pekat pada temperatur 90oC selama 72 jam. Boehmite-Ti(OH)4 yang didapat dari preparasi ini kemudian dipanaskan pada temperatur 120oC selama 24 jam dan dikalsinasi pada temperatur 550oC selama 18 jam sehingga akan dihasilkan katalis γ-Al2O3-TiO2. Karakterisasi katalis dilakukan dengan alat difraktometer sinar-X dan FTIR.
Katalis yang telah disintesis diuji daya katalitiknya untuk reaksi oksidasi katalitik isoeugenol dan dilakukan perbandingan dengan reaksi menggunakan katalis γ-Al2O3-TiO2 (1:1) PEG yang diperoleh dari hasil penelitian mahasiswi angkatan terdahulu dan telah teruji daya katalitiknya. Reaksi dimulai dengan penambahan metanol sebagai pelarut, selanjutnya pemakaian oksidator ramah lingkungan H2O2 dan Ozon (O3) serta penambahan 0,2 g katalis pada suhu 55oC-60oC selama 4 jam. Produk yang dihasilkan dikarakterisasi dengan Kromatografi Lapis Tipis (KLT), GC dan GC-MS.
Berdasarkan hasil persen yield vanili, penggunaan katalis γ-Al2O3-TiO2 (TTIP) lebih aktif daripada menggunakan katalis γ-Al2O3-TiO2 (1:1) PEG dengan pemakaian oksidator hidrogen peroksida (H2O2). Meskipun konversi isoeugenol hampir mencapai 100% tetapi untuk sampel trans-isoeugenol yield vanili yang dihasilkan sebesar 9,05% dan cis-isoeugenol 6,96% dengan penggunaan γ-Al2O3- TiO2 (TTIP) sebagai katalis dan H2O2 sebagai oksidator. Sedangkan pemakaian H2O2 sebagai oksidator lebih ringan daripada pemakaian O3 (ozon).

Catalytic oxidation reaction was conducted on isoeugenol into vanillin using γ-Al2O3-TiO2 as a catalyst. The heterogeneous catalyst γ-Al2O3-TiO2 was first prepared by reacting a solution of Al2(SO4)3 which was obtained NH4OH to form boehmite. Boehmite was added Ti(OH)4 gel by the sol-gel method from the hydrolysis of Titanium Tetraisopropoksida (TTIP) with H2O and HNO3 at 90oC and for 72 hours. Boehmite-Ti(OH)4 mixed gel was dried at 120oC for 24 hours and was calcined at 550oC for 18 hours to produce γ-Al2O3-TiO2. The catalyst characterization was performed on X-Ray diffraction instrument and FTIR.
The catalysts activity were tested on the oxidation of isoeugenol into vanillin and the results were compared by the oxidation reaction using Al2O3- TiO2(1:1)PEG catalyst, which was obtained from the previous research students. The oxidation reactions were conducted using methanol as a solvent, two kinds of green oxidators namely hydrogen peroxide (H2O2) and ozone (O3) and 0,2 g of catalyst at 55oC-60oC for 4 hours. The reaction products were determined by Thin Layer Chromatography (TLC), GC and GC-MS.
Based on the percent yield of vanillin, it was found that the catalyst γ- Al2O3-TiO2 (TTIP) was more active than catalyst Al2O3-TiO2(1:1)PEG using hydrogen peroxide (H2O2). Although the conversion of isoeugenol were almost 100%, the percent yields of vanillin were very low namely 9,05% from the trans- isoeugenol and 6,96% from the cis-isoeugenol using γ-Al2O3-TiO2 (TTIP) as a catalyst and H2O2 as the oxidator and hydrogen peroxide (H2O2) is milder compared to O3(ozone).
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S1051
UI - Skripsi Open  Universitas Indonesia Library
cover
Mohammad Nasikin
"ABSTRAK
Plastik dan sejenisnya merupakan kebutuhan yang mutlak bagi manusia modern. Oleh karena itu etilen yang merupakan bahan baku produk tersebut mempunyai nilai sangat strategic. Saat ini, etilen diproduksi dengan cara mengkonversi hidrokarbon dari minyak bumi. Mengingat semakin terbatasnya cadangan minyak, maka perlu dicari alternatif untuk memproduksi etilen. Etilen dapat dibuat dari etanol yang merupakan bahan baku terbarukan. Pada penelitian ini, dipakai katalis H-zeolit alam Lampung dan terjadi reaksi dehidrasi seri-paralel menghasilkan dua produk, yaitu dietil eter sebagai produk antara dan etilen sebagai hasil akhir.
Tahun pertama penelitian diarahkan untuk melakukan identifikasi zeolit alam Lampung serta treatment untuk merubah menjadi H-Zeolit yang dilanjutkan dengan konstruksi alat dan pengujian H-Zeolit pada reaktor alir kontinyu. Sedangkan tahun II, penelitian dilakukan untuk menentukan metode keseluruhan untuk mendapatkan katalis H-Zeolit yang memenuhi syarat aktivitas, selektivitas dan stabilitas sebagai katalis. Pada tahun ke-2 penelitian ini dilakukan dealuminasi dengan larutan asam untuk menaikkan ketahanan termal zeolit. Sedangkan tahun ke-3 difokuskan pada studi kinetika untuk menentukan persamaan reaksi, besaran konstanta laju reaksi, serta pemodelan untuk mensimulasi reaksi untuk skala pilot maupun skala komersial.
Pada tahun pertama, didapatkan metode preparasi zeolit menjadi H-Zeolit(HZ) dengan luas permukaan 90m2/g dan jumlah ion tertukar maksimum 62% (1120 meg1100 gzeolit) serta kekuatan asam yang tinggi dengan suhu desorpsi piridin 500°C. H-Zeolit tersebut memiliki aktivitas 3x lebih tinggi dibandingkan Zeolit alam (ZAL) dan mampu mengkonversi etanol 100% pada suhu reaksi 325°C akan tetapi mempunyai ketahanan termal hanya sampai suhu 300°C.
Dealuminasi terhadap zeolit alam Lampung pada tahun II dapat menaikkan rasio Si/Al sampai 1,6x apabila digunakan HC1 (HZC) dan terjadi kenaikan 1,8x apabila dengan HE. Terjadi pula kenaikan luas permukaan dengan luas maksimum 100m2/g. Kenaikan luas permukaan ini diikuti dengan kenaikan luas mikropori sehingga zeolit hasil dealuminasi memenuhi syarat sebagai katalis untuk reaksi dehidrasi etanol. Spektra IR menunjukkan zeolit yang telah didealuminasi mempunyai ketahanan termal sampai 600°C. Dari uji reaksi dapat disimpulkan bahwa HZC memiliki aktivitas, stabilitas termal maupun stabilitas reaksi yang paling tinggi. Oleh karena itu zeolit yang dipakai pads penelitian selanjutnya adalah zeolit dengan dealuminasi HCL 1 tahap dan pertukaran ion menggunakan NH¢NO3 dengan suhu kalsinasi 420°C.
Studi kinetika pada tahun ke-3 menunjukkan bahwa reaksi dehidrasi etanol menjadi etilen adalah reaksi concecutive-parallel dengan dietil eter sebagai produk antara. Harga konstanta laju reaksi sating berhubungan satu sama lain sehingga keseluruhan konstanta dapat ditentukan dengan penentuan satu konstanta laju pengurangan etanol menjadi eter.
Model untuk reaksi dehidrasi etanol menjadi etilen dapat disusun dari persamaan neraca massa berskala pelet katalis maupun berskala reaktor. Pers maan yang terbentuk merupakan persamaan diferensial biasa orde dua. Persamaan ini dipecahkan dengan metode Runge-Kutta dan disimulasikan pada berbagai kondisi operasi.
Hasil simulasi skala pelet menunjukkan bahwa laju reaksi dipengaruhi oleh tahanan difusi sehingga semakin besar diameter pelet akan menurunkan harga faktor efektivitas. Kenaikan diameter pelet dari 0,2-0,5 cm mengakibatkan penurunan faktor efektivitas sebesar 60 % untuk dietileter dan 40 % untuk etanoI. Untuk diameter partikel = 0,5cm dan suhu reaksi = 673K faktor efektivitas etanol, eter dan etilen adalah berturut-turut 0,6, 0,4 dan 0,62. Sedangkan peningkatan suhu dari 450 menjadi 673K menyebabkan penurunan faktor efektivitas etanol dari 0,97 menjadi 0,6.
Sedangkan hasil simulasi skala Raktor menunjukkan pada P =i atrn, dan T = 673 K dihasilkan etilen maksimum dengan selektifitas 96,4 %, yield 92,4 %, dan konversi etanol 95,8%. Eter maksimum dihasilkan dengan selektifitas 14,7% , yield 14,39% dan konversi etanol 97,68% pada P =9 atm, dan T = 673 K. Reaktor isotermal untuk reaksi dehidrasi etanol yang dapat menghasilkan produk etilen optimum pada P = 1 atm dan T = 673 K, adalah raktor dengan dimensi : L = 3 m, D reaktor = 10 cm, diameter pelet katalis = 0,5 cm, dan berat katalis = 14,7 Kg."
Depok: Fakultas Teknik Universitas Indonesia, 2000
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Mohammad Nasikin
"ABSTRAK
Plastik dan sejenisnya merupakan kebutuhan yang mutlak bagi manusia modern. Oleh karena itu etilen yang merupakan bahan baku produk tersebut mempunyai nilai sangat strategic. Saat ini, etilen diproduksi dengan cara mengkonversi hidrokarbon dari minyak bumi. Mengingat semakin terbatasnya cadangan minyak, maka perlu dicari alternatif untuk memproduksi etilen. Etilen dapat dibuat dari etanol yang merupakan bahan baku terbarukan. Pada penelitian ini, dipakai katalis H-zeolit alam Lampung dan terjadi reaksi dehidrasi seri-paralel menghasilkan dua produk, yaitu dietil eter sebagai produk antara dan etilen sebagai hasil akhir.
Tahun pertama penelitian diarahkan untuk melakukan identifikasi zeolit alam Lampung serta treatment untuk merubah menjadi H-Zeolit yang dilanjutkan dengan konstruksi alat dan pengujian H-Zeolit pada reaktor alir kontinyu. Sedangkan tahun II, penelitian dilakukan untuk menentukan metode keseluruhan untuk mendapatkan katalis H-Zeolit yang memenuhi syarat aktivitas, selektivitas dan stabilitas sebagai katalis. Pada tahun ke-2 penelitian ini dilakukan dealuminasi dengan larutan asam untuk menaikkan ketahanan termal zeolit. Sedangkan tahun ke-3 difokuskan pada studi kinetika untuk menentukan persamaan reaksi, besaran konstanta laju reaksi, serta pemodelan untuk mensimulasi reaksi untuk skala pilot maupun skala komersial.
Pada tahun pertama, didapatkan metode preparasi zeolit menjadi H-Zeolit(HZ) dengan luas permukaan 90m2/g dan jumlah ion tertukar maksimum 62% (1120 meg1100 gzeolit) serta kekuatan asam yang tinggi dengan suhu desorpsi piridin 500°C. H-Zeolit tersebut memiliki aktivitas 3x lebih tinggi dibandingkan Zeolit alam (ZAL) dan mampu mengkonversi etanol 100% pada suhu reaksi 325°C akan tetapi mempunyai ketahanan termal hanya sampai suhu 300°C.
Dealuminasi terhadap zeolit alam Lampung pada tahun II dapat menaikkan rasio Si/Al sampai 1,6x apabila digunakan HC1 (HZC) dan terjadi kenaikan 1,8x apabila dengan HE. Terjadi pula kenaikan luas permukaan dengan luas maksimum 100m2/g. Kenaikan luas permukaan ini diikuti dengan kenaikan luas mikropori sehingga zeolit hasil dealuminasi memenuhi syarat sebagai katalis untuk reaksi dehidrasi etanol. Spektra IR menunjukkan zeolit yang telah didealuminasi mempunyai ketahanan termal sampai 600°C. Dari uji reaksi dapat disimpulkan bahwa HZC memiliki aktivitas, stabilitas termal maupun stabilitas reaksi yang paling tinggi. Oleh karena itu zeolit yang dipakai pads penelitian selanjutnya adalah zeolit dengan dealuminasi HCL 1 tahap dan pertukaran ion menggunakan NH¢NO3 dengan suhu kalsinasi 420°C.
Studi kinetika pada tahun ke-3 menunjukkan bahwa reaksi dehidrasi etanol menjadi etilen adalah reaksi concecutive-parallel dengan dietil eter sebagai produk antara. Harga konstanta laju reaksi sating berhubungan satu sama lain sehingga keseluruhan konstanta dapat ditentukan dengan penentuan satu konstanta laju pengurangan etanol menjadi eter.
Model untuk reaksi dehidrasi etanol menjadi etilen dapat disusun dari persamaan neraca massa berskala pelet katalis maupun berskala reaktor. Pers maan yang terbentuk merupakan persamaan diferensial biasa orde dua. Persamaan ini dipecahkan dengan metode Runge-Kutta dan disimulasikan pada berbagai kondisi operasi.
Hasil simulasi skala pelet menunjukkan bahwa laju reaksi dipengaruhi oleh tahanan difusi sehingga semakin besar diameter pelet akan menurunkan harga faktor efektivitas. Kenaikan diameter pelet dari 0,2-0,5 cm mengakibatkan penurunan faktor efektivitas sebesar 60 % untuk dietileter dan 40 % untuk etanoI. Untuk diameter partikel = 0,5cm dan suhu reaksi = 673K faktor efektivitas etanol, eter dan etilen adalah berturut-turut 0,6, 0,4 dan 0,62. Sedangkan peningkatan suhu dari 450 menjadi 673K menyebabkan penurunan faktor efektivitas etanol dari 0,97 menjadi 0,6.
Sedangkan hasil simulasi skala Raktor menunjukkan pada P =i atrn, dan T = 673 K dihasilkan etilen maksimum dengan selektifitas 96,4 %, yield 92,4 %, dan konversi etanol 95,8%. Eter maksimum dihasilkan dengan selektifitas 14,7% , yield 14,39% dan konversi etanol 97,68% pada P =9 atm, dan T = 673 K. Reaktor isotermal untuk reaksi dehidrasi etanol yang dapat menghasilkan produk etilen optimum pada P = 1 atm dan T = 673 K, adalah raktor dengan dimensi : L = 3 m, D reaktor = 10 cm, diameter pelet katalis = 0,5 cm, dan berat katalis = 14,7 Kg."
Depok: Fakultas Teknik Universitas Indonesia, 2000
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>