Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 101136 dokumen yang sesuai dengan query
cover
Fakultas Teknik Universitas Indonesia, 1992
S48786
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Fakultas Teknik Universitas Indonesia, 1993
S48698
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahlul Halli
"Penanganan beban thermal pada dunia industri sangat diperlukan. Sistem alat penukar kalor bisa dikembangkan pada sisi fluida yang digunakan dan desain pipa yang digunakan. Respon dalam bidang thermal adalah maraknya kembali perhatian akan pentingnya alat penukar kalor (heat exchanger). Sebuah alat penukar kalor yang baik harus ditunjang oleh koefesien perpindahan panas yang baik. Koefesien perpindahan panas sendiri di pengaruhi oleh bilangan Reynolds. Dalam penelitian ini, dilakukan rancang bangun sebuah alat penukar kalor tipe double pipe dengan variasi pada pipa air panas, dimana pada pipa luar adalah pipa baja karbon memiliki koefisien perpindahan kalor konduksi 54 W/m.K dan memiliki dimensi panjang pipa 1 m, diameter luar (Ø out) 88.6 mm, dan diameter. dalam (Ø in) 85 mm dan pipa dalam adalah pipa baja karbon memiliki koefisien perpindahan kalor konduksi 54 W/m.K dan memiliki dimensi panjang pipa 1.2 m, diameter luar (Ø out) 30 mm, dan diameter dalam (Ø in) 28 mm. Bedasarkan pengujian didapatkan grafik kenaikan nilai koefisien perpindahan kalor sebanding dengan kenaikan bilangan Reynolds. Profil kotak memiliki nilai koefisien perpindahan panas yang lebih tinggi jika dibandingkan dengan profil bulat. Pada perbedaan jenis aliran sangat berpengaruh terhadap nilai koefisien perpindahan kalor profil bulat, sedangkan pada profil kotak tidak begitu terlihat perbedaannya.

Handling of thermal load on the industrial world is indispensable. Heat exchanger system can be developed on the side of the fluid used and the design of pipe used. Response in the thermal field is widespread concern about the importance of reheat exchanger (heat exchanger). A good heat exchanger must be supported by a good heat transfer coefficient. Heat transfer coefficient itself is influenced by the Reynolds number. In this study, carried out design and construction of an appliance type double pipe heat exchanger with a variation on the hot water pipes, where the outer pipe is carbon steel pipe has a conduction heat transfer coefficient of 54 W / mK and has dimensions of 1 m length of pipe, outer diameter (Ø out) 88.6 mm, and diameter in (Ø in) 85 mm and pipe in carbon steel pipe is a conduction heat transfer coefficient of 54 W / mK and has dimensions of 1.2 m length of pipe, outer diameter (Ø out) 30 mm, and diameter in (Ø in) 28 mm. Based on the obtained testing the graph increases the heat transfer coefficient is proportional to the increase in Reynolds number. Profiles box has a heat transfer coefficient values are higher if compared to the rounded profile. In different types of flow greatly affect the heat transfer coefficient value rounded profile, whereas the profile box is not so pronounced.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1699
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Raihan Haidar
"Saat ini gas alam merupakan sumber daya alam dengan cadangan terbesar ketiga di dunia.Gas alam pada awalnya tidak dikonsumsi sebagai sumber energi karena kesulitan dalam hal transportasi namun seiring berkembangnya teknologi mulai adanya produk-produk dari gas alam salah satunya adalah LNG. LNG atau liquefied natural gas adalah gas alam yang dicairkan yang memiliki reduksi volume 1/600 dibandingkan kondisi awal gas alam yang membuat LNG lebih mudah dan aman untuk dibawa dari daerah produksi ke konsumen. Proses pencairan gas alam menjadi LNG disebut liquefaction, gas alam dicairkan hingga suhu-160℃. Pada proses liquefaction ini terdapat heat exchanger atau alat penukar kalor yang merupakan inti dari pencairan gas alam menjadi LNG. Penelitian ini dilakukan dengan metode studi literatur dan studi lapangan di PT. PGN LNG. Tujuan penilitian ini adalah untuk merancang alat penukar kalor pada proses liquefaction, dengan melihat aspek termodinamik dan aspek mekanik nya. Fluida pada alat penukar kalor adalah gas alam dengan laju aliran 240 MMscfd dan dengan gravitasi spesifik sebesar 0,65. Gas alam sebelum memasuki alat penukar kalor di precooling terlebih dahulu hingga-35℃ dan selanjutnya di cairkan dengan refrigeran pada alat penukar kalor. Perancangan alat penukar kalor ini menggunakan standar TEMA (Turbular Exchanger Manufacturer Association) sebagai acuan mekanik dalam merancang dan menggunakan metode kern untuk perhitungan termal pada alat penukar kalor. Hasil dari penilitian ini adalah dimensi dan juga sketsa rancangan alat penukar kalor

Currently natural gas is a natural resource with the third largest reserves in the world. Natural gas was not initially consumed as an energy source because of difficulties in terms of transportation, but as technology develops, there are products from natural gas, one of which is LNG. LNG is liquefied natural gas which has a volume reduction of 1/600 compared to the initial condition of natural gas which makes LNG easier and safer to carry from the production area to the consumer. The process of liquefying natural gas into LNG is called liquefaction, natural gas is liquefied to -160 ℃. In this liquefaction process there is a heat exchanger which is the core of liquefying natural gas into LNG. This research was conducted by the method of literature study and field studies at PT. PGN LNG. The purpose of this research is to design a heat exchanger in the liquefaction process, by looking at the thermodynamic and mechanical aspects. Fluid in the heat exchanger is natural gas with a flow rate of 240 MMscfd and with a specific gravity of 0.65. Natural gas before entering the heat exchanger is precooled up to -35 ℃ and then liquefied with refrigerant in the heat exchanger. The design of this heat exchanger uses the TEMA (Turbular Exchanger Manufacturer Association) standard as a mechanical reference in designing and using the kern method for thermal calculations on the heat exchanger. The results of this research are the dimensions and also the sketch of the design of the heat exchanger."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siti Agrisylva Shalihati
"Gas alam diubah menjadi LNG (Liquefied Natural Gas) untuk memudahkan dalam pendistribusian gas alam jarak jauh. LNG ini memiliki volume sekitar 1/600 dari volume gas alam sehingga dapat mengangkut jauh lebih banyak dibandingkan pada saat berbentuk gas alam. Sebelum pendistibusiannya ke konsumen, LNG tersebut akan diubah kembali menjadi gas. Proses diubahnya LNG kembali ke bentuk gas disebut sebagai regasifikasi. Pada proses regasifikasi dibutuhkan alat penukar kalor sebagai alat penukar kalor. Penelitian ini bertujuan untuk mendapatkan hasil sebuah rancangan alat penukar kalor pada proses regasifikasi LNG dengan mempertimbangkan aspek termal dan mekanik. Metode yang digunakan untuk aspek termal adalah metode kern sedangkan untuk aspek mekanik menggunakan TEMA (Turbular Exchanger Manufacturer Association) sebagai standar. Pada metode kern akan didapat diameter sebesar 2.03 m dengan panjang dari tube sebesar 6 m, diameter dalam tube 0.037 m dan diameter luar tube 0.04 m berdasarkan standarnya. Selain itu, didapatkan juga besar diameter shell yang akan menjadi acuan pada bagian mekanik menggunakan TEMA sehingga mendapatkan dimensi pada bagian shell seperti ketebalan shell sebesar 2.43 x 10-2 m, ketebalan tube sheet sebesar 0.112 m, diameter nozzle 0.254 m, dan diameter luar shell 2.08 m. Untuk hasil akhir merupakan sebuah design dari alat penukar kalor sesuai dengan metode yang digunakan dengan kapasitas 7 kg/s. "
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Lutfy Faluthi Firdaus
"ABSTRAK
Peralatan penukar panas tipe shell and tube merupakan peralatan yang berfungsi untuk mentransfer panas di antara dua atau lebih fluida. Di industri pengolahan minyak, peran peralatan ini sangatlah penting. Kegagalan pada alat penukar panas akan berdampak terhadap keandalan, ketersediaan, dan keamanan peralatan secara keseluruhan, yang pada akhirnya dapat menyebabkan kerugian finansial. Oleh karena itu, penyelidikan perlu dilakukan untuk mengetahui akar penyebab kegagalan tabung penukar panas, sehingga kegagalan yang serupa tidak terulang kembali di kemudian hari. Penyelidikan dilakukan pada bagian shell dan tube yang meliputi pengamatan lapangan, pengukuran dimensi, pengamatan visual, serta melakukan pengujian tidak merusak menggunakan die penetran.
Dari pengamatan pada bagian shell, tidak tampak ada tanda kerusakan pada bagian luar maupun dalam, sedangkan pengamatan pada bagian tube tampak tanda kerusakan sehingga dilakukan pengujian metalografi dengan mikroskop optik dan pemindaian mikroskop elektron, dan analisis komposisi kimia.
Hasil analisis menyimpulkan bahwa akar penyebab kegagalan pada tube adalah karena retak korosi retak tegang (stress corrosion cracking), yang disebabkan oleh kombinasi dari lingkungan kerja asam dan tegangan tarik.

ABSTRACT
Shell and tube type heat exchanger is the equipment that functioned to transfer heat between two or more fluids. In the oil processing industry, the role of this equipment is very important. Failure of the heat exchanger will have an impact on the overall reliability, availability and safety of the equipment, which in turn can cause financial losses. Therefore, an investigation needs to be carried out to find out the root cause of the failure of the heat exchanger tube, so that similar failures do not recur in the future. Investigations were carried out on the shell and tube sections which included field observations, dimensional measurements, visual observations, as well as non-destructive testing using die penetrants.
From observations on the shell, there were no visible signs of damage either on the outside or inside, while observations on the tube showed signs of damage so metallographic testing with optical microscop and scanning electron microscop, and chemical composition analysis were carried out.
The results of the analysis concluded that the root cause of failure in the tube is due to stress corrosion cracking, which is caused by a combination of acid working environment and tensile stress."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
"Adanya permintaan akan kebutuhan Bahan Bakar Minyak (BBM) di dalam negeri yang selalu meningkat dan meningkatkan efisiensi pengadaan serta penyaluran BBM bagi konsumer di Pulau Jawa sebesar 34 % dan juga untuk mengurangi ketergantungan suplai BBM maka Kilang Pertamina Cilacap sudah mengantisipasi dengan menambah kapasitas produksi kilang melalui proyek debottlenecking.
Salah satu yang ditingkatkan kapasitas produksinya adalah kerosine sebab selama ini kerosine lebih banyak diimport untuk kebutuhan dalam negeri maka dalam skripsi ini coba untuk menganalisa perubahan kondisi operasi akibat kenaikkan produk kerosine sebesar 10 % yang diimbangi dengan penurunan LDO sebesar 13%.
Analisa yang dilakukan lebih menfokuskan kepada sistim unit crude distillate di Kilang FOC II A , tcrutama pada desain proses di kolom dislilasi (unit 011) dan terhadap jaringan penukar kalor.
Metode yang digunakan disini adalah dengan menggunakan tabel sensitivitas. Metode ini dapat digunakan secara cepat sebagai rujukan awal dalam mengarnbil keputusan dengan mempertimbangkan faktor energi, Fleksibilitas dan invcslasi (modal). Dengan metode tersebut didapatkan 4 buah solusi alternatif. Dari berbagai alternatif tersebut dipilih yang terbaik yaitu dari segi biaya total paling rendah dibandingan dengan alternatif-alternatif yang lain.
Disini dipilih alternatif pertama dengan biaya total untuk proses operasi selama perubahan kondisi operasi juslru dapat dihemat sebesar 66 juta/tahun."
Fakultas Teknik Universitas Indonesia, 1999
S49185
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Alfarros Haris Caya
"Liquefied Natural Gas (LNG) storage merupakan tangki penyimpanan yang menampung dan menjaga LNG pada suhu yang sangat rendah. LNG perlu dipertahankan suhunya pada suhu di bawah -160 ºC agar tidak menguap. Uap yang tercipta dari kebocoran kalor pada tangki ini disebut sebagai boil-off gas (BOG). Keberadaan BOG dapat menyebabkan kelebihan tekanan pada tangki sehingga perlu dilakukan penanganan dari BOG yang tercipta salah satunya dengan mencairkan kembali ke fase liquid dengan menurunkan suhunya menggunakan alat penukar kalor. Tujuan dari penelitian ini adalah untuk mendapatkan rancangan alat penukar kalor yang digunakan pada proses ini dalam aspek termal dan aspek mekanik. Perancangan ini dilakukan untuk LNG storage pada kapal LNG tanker dengan kapasitas 20.000 CBM dengan laju penguapan 0,15% per hari. Untuk aspek termal perancangan menggunakan metode Kern. Sedangkan untuk aspek mekanik, perancangan berpedoman pada standar yang dari Tubular Exchanger Manufacturer Association (TEMA). Dimensi alat penukar kalor yang didapat menggunakan ukuran panjang tube 192 inci dengan diameter pipa ukuran ½ inci untuk bagian tube dan pipa ukuran 24 inci untuk bagian shell, jumlah tube 120 buah dengan pitch 26,63 mm, jumlah baffle 12, dan diameter flange 693 mm. Material pipa yang dipilih adalah stainless steel 316. Pada bagian getaran, frekuensi vortex shading yang didapat adalah 59 siklus/detik dan frekuensi natural 63 siklus/detik sehingga terjadi getaran yang disebabkan vortex. Faktor kekotoran hasil hitung senilai 2,6×10-4 lebih kecil dari faktor kekotoran yang digunakan yaitu 1×10-3 sehingga aman untuk dioperasikan. Faktor kekotoran perhitungan senilai 2,6×10-4 lebih kecil dari faktor kekotoran yang digunakan yaitu 1×10-3 sehingga aman untuk dioperasikan.

Liquefied Natural Gas (LNG) storage is a storage tank containing LNG and keeping it at very low temperature. LNG need to be maintained at temperature below -160 ºC to prevent it boiling to gas. The boil formed due to the heat leakage in the storage is called boil off gas (BOG). The presence of BOG are able to cause over pressure and increase the wobbe index of the stored LNG, thus it required a handling measure of the formed BOG that can be done by reliquefacting the BOG to the liquid phase by decreasing the temperature using a heat exchanger. The purpose of this research is to determine the design of suitable heat exchanger for this process considering the thermal aspect and mechanical aspect. The design is conducted for LNG storage in LNG Tanker with capacity of 20000 CBM with boiling rate 0,15% per day. For thermal aspect, the design process use the Kern method. While the fudamental of mechanical aspect, the design use TEMA standard. The obtained dimension of designed heat exchanger is 192 inch tube length with ½ inch diameter pipe for tube section and pipe size 24 inch for shell side pipe, number of tube 120 pieces with pitch 26,63 mm, number of baffle 12, and flange diameter 693 mm. The selected pipe material is stainless steel 316. For the vibration, the obtained frequency of vortex shading is 59 cycles/second and natural frequency is 63 cycles/second so there is vibration due to the vortex shadding. Calculated fouling factor is 2,6×10-4 which is smaller than used fouling factor, 1×10-3 so it is safe to operate."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>