Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 157396 dokumen yang sesuai dengan query
cover
Helmi Pratikno
Fakultas Teknik Universitas Indonesia, 1999
S49240
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aruansyah Abdul Gani
Depok: Fakultas Teknik Universitas Indonesia, 1999
S49198
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agus Salim
"Dalam makalah ini dilakukan pemodelan dan simulasi reaktor unggun tetap non-isotermal, non-adibatik untuk reaksi reformasi uap air. Model yang digunakan berupa model heterogen dua dimensi dengan arah aksial dan radial. Faktor-faktor hidrodinamika yang ada pada reaktor dipertimbangkan, demikian juga perpindahan massa dan energi antar fasa, serta reaksi permukaan. Model heterogen ini membedakan kedua fasa pada reaktor, yaitu fasa gas dan fasa padat berupa partikel katalis. Pola aliran fasa gas dimodelkan dengan menggunakan konsep dispersi radial. Mekanisme reaksi yang digunakan mengacu pada korelasi kinetika yang dikemukakan oleh Akers dan Camp dengan melibatkan proses adsorpsi, desorpsi, dan reaksi permukaan.
Model yang telah dikembangkan dibagi dalam dua sistem, yaitu skala reaktor dan skala pelet katalis. Penyelesaian persarnaan skala pelet katalis dilakukan dengan metode kolokasi ortogonal enam titik. Sedangkan persamaan-persamaan diferensial parsial orde dua skala reaktor diselesaikan dengan menggunakan dua metode, yaitu metode Runge-Kutta orde empat untuk penyelesaian arah aksial dan metode beda hingga (finite difference) untuk penyelesaian arah radial.
Hasil secara menyeluruh menunjukkan bahwa proses reformasi uap air dapat digambarkan dengan baik melalui model heterogen tersebut. Model yang kemudian disimulasikan tersebut menghasilkan profil konsentrasi dan temperatur di dalam partikel katalis, serta profil konsentrasi dan temperatur pada arah aksial dan radial di reaktor, yang rnenggambarkan kinerja reaktor.
Dari hasil perhitungan, diperoleh bahwa konversi dan yield reaktan (CH4) pada arah aksial dan radial naik dengan naiknya temperatur, dan tekanan yang menurun. Kenaikan konversi dan yield juga dipengaruhi oleh ukuran parlikel katalis, dimana semakin kecil ukuran diameter partikel katalis maka konversi dan yield semakin naik."
Depok: Fakultas Teknik Universitas Indonesia, 1999
S49201
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andrie Hariyanto
"Makalah ini membahas tentang pemodelan dan simulasi reaktor unggun tetap (fixed bed reacror) heterogen nonisotemlal nonadiabatik dua dimensi pada keadaan tunak (steady srare). Model heterogen ini membedakan kedua fasa yang terlibat yaitu fasa gas dan fasa padatan, untuk masing-masing pada skala reaktor dai! skala partikel katalis. Pola aliran fasa gas di skala reaktor dimodelkan dengan menggunakan konsep dispersi aksial dan radial. Untuk skala partikel diperhitungkan faletor difusi dengan menggunakan pendekatan difusi efektif, dimana bersama-sama dengan suku reaksi membentuk model untuk skala partikel katalis. Reaksi yang dipilih sebagai contoh reaksi adalah reaksi reformasi kukus (steam rdorming) dengan kinetika yang dikembangkan oleh Froment dan Xu. Data- data hasil pengembangan Froment dan Xu tersebut digunakan sebagai data validasi model.
Penyelesaian skala realctor untuk arah aksial dan radial dilakukan masing-masing dengan menggunakan metode kolokasi ortogonal delapan titik seperti yang dikembangkan oleh Finlayson. Persamaan aljabar dalam bentuk matriks yang diperoleh kemudian diselesaikan dengan menggunakan metode Newton-Raphson. Unruk skala partikel katalis juga digunakan metode kolokasi ortogonal delapan titik untuk geometri sferis. Persamaan-persamaan skala reaktor dan skala partikel tersebut diselesaikan secara serentak (simultan) sampai tingkat konvergensi yang diinginkan.
Dari hasil simulasi, reaktor unggun tetap dengan kinetika Froment dan Xu dapat dimodelkan dengan baik melalui model heterogen dua dimensi tersebut. Hasil yang didapatkan berupa profil konsentrasi dan temperatur di skala partikel dan skala reakton Variasi berbagai parameter dilakukan untuk mengetahui perilaku model tersebut pada berbagai kondisi.
Hasil simulasi menunjukkan bahwa baik konversi CH4 maupun H20 meningkat dengan naiknya temperatur umpan sedangkan peningkatan tekanan umpan menyebabkan konversi keduanya menurun. Hasil simulasi juga menunjukkan bahwa meningkatnya rasio umpan H2O/CH4 menyebabkan konversi CH4 meningkat sedangkan konversi H20 menurun."
Depok: Fakultas Teknik Universitas Indonesia, 2000
S49168
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putera Anindita
"Dalam skripsi ini dilakukan pemodelan dan simulasi reaktor unggun tetap non-isotemal, non-adibalik untuk reaksi reformasi uap air dengan model heterogen dua dimensi (arah aksial dan radial) dengan mempertimbangkan faktor-faktor hidrodinamika yang ada pada reaktor juga perpindahan massa dan energi antar fasa (fasa ruah dan fasa partikel katalis), serta reaksi pennukaan. Mekanisme reaksi mengacu pada korelasi kinetika yang dikemukakan oleh Akers dan Camp. Model yang telah dikembangkan dibagi dalam dua sistem, yaitu skala reaktor dan skala pelet katalis. Penyelesaian persamaan skala partikel katalis dilakukan dengan metode kolokasi ortogonal enam titik. Sedangkan persamaan-persamaan diferensial parsial orde dua skala reaktor diselesalkan dcngan menggunakan metode beda hingga (finite difference) dengan formula central finite difference unluk penyelesaian arah radial, dan backward finite difference untuk arah aksial.
Dari hasil simulasi diperoleh bahwa unluk reaksi reformasi uap air, kenaikan temperatur Fluida masuk reaktor dari 673 K menjadi 823 K akan menaikkan harga konversi 10,8 % dari harga awal. Sebaliknya kenaikan tekanan fluida masuk reaktor dari 26 bar menjadi 32 bar akan menurunkan konversi sebesar 4,2 %. Jika dihubungkan dengan dimensi reaklor, maka pada harga konversi yang kecil, kenaikan harga yield yang besar hanya membutuhkan pertambahan volume reaktor yang kecil. Sebaliknya pada harga konversi yang besar, maka kenaikan harga konvcrsi yang kecil akan membutuhkan pcrtambahan volume reaktor yang besar. Dengan mengubah mol CH4 umpan maka pertambahan jumlah rasio umpan H2OCH4 dari 2 hingga 4 akan mengubah konvcrsi CH4 dari 0,634 menjadi 0,713. Perubahan ukuran diameter kalalis dari 0,002 m menjadi 0,02 m akan menurunkan konversi total sebesar 57,3 % dari konversi mula-mula."
Depok: Fakultas Teknik Universitas Indonesia, 2000
S49169
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1998
S49037
UI - Skripsi Membership  Universitas Indonesia Library
cover
Thomas Suhartanto
"Reaksi reformasi metana dengan karbondioksida (CO2 reforming) untuk menghasilkan gas sintesis (campuran gas CO dan H2) belum dimanfaatkan pada skala industri. Pada beberapa aplikasi, reaksi ini lebih unggul dibandingkan reaksi reformasi dengan kukus (steam reforming) untuk menghasilkan gas sintesis.
Riset dan pengembangan pada saat ini terutama dititikberatkan pada pengembangan katalis dan reaktor untuk reaksi reformasi CO2 yang diaplikasikan sebagai reaksi termokimia untuk konversi dan transmisi energi matahari menjadi energi panas, pembuatan gas sintesis untuk sintesa metanol dan pemanfantan gas alam yang mengandung CO2.
Pada penelitian ini, dilakukan pengujian katalis bermuatan logam M dari golongan VIIB dengan penyangga γ-Al2O3. Katalis dipersiapkan dengan metoda impregnation to incipient wetness, dengan muatan 1, 2 dan 3 % mol M/Al, dan dengan metoda impregnasi pelet. Sebagai pembanding, diuji katalis bermuatan 0,5 % mol Rh/Al.
Pengujian katalis dilakukan menggunakan reaktor unggun tetap pada suhu 600 - 850 °C dan tekanan 1 atm. Katalis berbentuk butiran berukuran 150 - 250 μm. Sebagai umpan digunakan campuran gas CH4 dan CO2 dengan perbandingan 1 : 1,1 pada laju alir 200 ml/min STP.
Hasil terbaik diberikan katalis 2 % mol M/γ-Al2O3 dimana konversi, selektivitas, yield, perbandingan CO/H2 dan parameter kinetika reaksinya lebih baik dari katalis bermuatan M lainnya.
Energi aktivasi rata-rata katalis bermuatan logam M yang diuji adalah 131 kJ/mol. Ada kemungkinan pembentukan deposit karbon pada suhu rendah."
Depok: Fakultas Teknik Universitas Indonesia, 1995
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sabar Sungkowo
"ABSTRAK
Model matematis satu dimensi dikernbangkan untuk mensimulasikan pengaruh parameter operasi (suhu reaktor, tekanan total sisi shell, laju alir metana dan rasio Ar/CI-1.1) terhadap konversi dan selektivitas dari reaktor membran perovskite (LaGa0_39Co0_60MgQ,|0O35). Reaktor membran diasumsikan bekerja pada kondisi adiabatis isotennal dengan tipe aliran plug. Reaksi yang diamati adalah oksidasi parsial metana menjadi gas sintetis dcngan katalis Ni.
Persamaan yang diperoleh merupakan persamaan diferensial biasa orde satu uuronomous yang saling terkait. Untuk menyelesaikan sekumpulan persamaan diferensial yang saling terkait ini digunakan metode Quasi Newton dimana matriks Jacobiannya dihimng secara numeris dengan pendekatan backward cliff/Ezrences.
Untuk invers matri ks Jacobiannya sendiri digunakan metode dekomposisi LU.
Hasil simulasi menunjukkan bahwa produk reaksi pembakaran metana Iebih banyak dari produk reaksi oksidasi parsial. Produk reaksi oksidasi parsial yang diperoleh sedikit karena kesetimbangan bergeser ke arah realctan sehingga gas sintetis yang terbentuk kembali terurai. Nilai konversi metana yang kecil (26,6%) disebabkan karena jumlah metana yang bereaksi dibatasi oleh laju difusi oksigen dari sisi lube ke sisi shell. Kenaikan suhu reaktor meningkatkan konversi metana yang terbakar akibat naiknya laju difusi oksigen sesuai dengan kenaikan suhu reaktor. Penlnunan tekanan total sisi shell dari 1 atm ke 0,1 atm akan rncnaikkan konvcrsi metana sekitar 4%. Kenaikan konversi ini disebabkan lebih banyak metana yang bereaksi menjadi gas sintetis akibat kesetimbangan bergeser ke arah produk gas sintetis.
Kenaikan laju alir metana akan mendorong reaksi oksidasi parsial lebih banyak teljadi dikarenakan reaksi terjadi dalam kondisi kekurangan oksigen. Rasio Ar/CH4 yang semakin meningkat dari 0 ke 25 hanya menaikkan konversi metana 2,2%
akibat pembentukan gas sintetis bertambah banyak.

"
2001
S49162
UI - Skripsi Membership  Universitas Indonesia Library
cover
Harwikarya
Depok: Fakultas Teknik Universitas Indonesia, 1998
T40699
UI - Tesis Membership  Universitas Indonesia Library
cover
Didier Nsabimana
"Biodiesel atau Fatty Acid Methyl Ester (FAME) mendapatkan terlalu banyak perhatian karena penurunan cadangan minyak di seluruh dunia dan masalah perubahan iklim. Meskipun biodiesel memiliki banyak manfaat dibandingkan minyak diesel, biodiesel masih memiliki masalah stabilitas oksidasi dan sifat aliran dingin yang membatasi penerapannya. Jadi, untuk mengurangi masalah ini, kita perlu memutakhirkan FAME kita dengan menghidrogenasi sebagiannya. Dalam penelitian ini biodiesel dengan komposisi 95,3% metil linoleat (C18:2) dan 4,7% metil oleat (C18:1) dicampur dengan pelarut n-heptana dengan perbandingan 20% sampai 80% dan dihidrogenasi sebagian dalam reaktor trickle bed menggunakan Ni/Al2O3 sebagai katalis. Penelitian ini dilakukan dengan menggunakan reaktor trickle bed yang ada, sebelum memulai eksperimen reaktor trickle bed dimodifikasi; kami memasang tungku kedua di unggun katalis, ukuran katalis adalah 0,7-0,6 mm, serpihan stainless-steel digunakan untuk pasir silika di bagian pemanas untuk meningkatkan laju perpindahan panas.
Reaktor trickle bed yang digunakan memiliki diameter 2,05 cm dan tinggi total 37 cm, unggun katalis memiliki tinggi 24 cm sedangkan bagian pemanas memiliki tinggi 11 cm. Itu dioperasikan pada tekanan 7 bar dan suhu 135 oC, 160 °C dan 185 °C. Pada suhu 135 oC ada 99,21% konversi metil linoleat (C18:2) menjadi metil stearat (C18:0) dan metil oleat (C18:1). Pada suhu 160 °C ada konversi 98,42% dari metil linoleat (C18:2) menjadi metil stearat (C18:0) dan metil oleat (C18:1). Pada suhu 185 °C ada konversi lengkap (100%) dari metil linoleat (C18:2) menjadi metil stearat (C18:0) dan metil oleat (C18:1). Pada 135 oC percobaan menghasilkan H-FAME dengan jumlah C18: 0 yang lebih tinggi yaitu 57,65% dari C18:0 dan 39,4% dari C18:1, pada 160 °C percobaan menghasilkan H-FAME dengan komposisi yang hampir sama yaitu C18:0 dan C18:1 yaitu 49,1% dari C18:0 dan 46,85% dari C18:1 sedangkan pada 185 °C percobaan menghasilkan H-FAME dengan komposisi yang lebih tinggi dari C18:1 yaitu 42,15% dari C18:0 dan 53,9% dari C18:1.

Biodiesel or Fatty Acid Methyl Ester (FAME) is gaining too much attention due to the decline of oil deposits worldwide and the climate change concerns. Although biodiesel has many benefits over petroleum diesel it still has the problem of oxidation stability and cold flow properties which limit its application. So, in order to mitigate these problems, we need to upgrade our FAME by partially hydrogenating it. In this research the biodiesel with the composition of 95.3 % methyl linoleate (C18:2) and 4.7 % methyl oleate (C18:1) was mixed with n-heptane as solvent to the ratio of 20% to 80% and partially hydrogenated in the trickle bed reactor using Ni/Al2O3 as a catalyst. This research was conducted using the existing trickle bed reactor so, before starting the experiments the trickle bed reactor was modified; we installed a second furnace at catalyst bed, the size of catalyst was 0.7-0.6 mm, stainless-steel flakes were used instead of silica sand in the heating section in order to increase the heat transfer rate.
The trickle bed reactor used had the diameter of 2.05 cm and a total height of 37 cm, the catalyst bed had a height of 24 cm while the heating section had a height of 11 cm. It was operated at a pressure of 7 bar and temperatures of 135 °C, 160 °C and 185 °C. At a temperature of 135 °C there was 99.21% conversion of methyl linoleate (C18:2) into methyl stearate (C18:0) and methyl oleate (C18:1). At a temperature of 160 °C there was 98.42% conversion of methyl linoleate (C18:2) into methyl stearate (C18:0) and methyl oleate (C18:1). At a temperature of 185 oC there was complete conversion (100%) of methyl linoleate (C18:2) into methyl stearate (C18:0) and methyl oleate (C18:1). At 135 °C the experiment yielded H-FAME with higher amount of C18:0 i.e 57.65% of C18:0 and 39.4% of C18:1, at 160 °C the experiment yielded H-FAME with almost equal composition of C18:0 and C18:1 i.e 49.1% of C18:0 and 46.85% of C18:1 while at 185 °C the experiment yielded the H-FAME with higher composition of C18:1 i.e 42.15% of C18:0 and 53.9% of C18:1.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T55071
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>