Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 115603 dokumen yang sesuai dengan query
cover
Aris Risdiyanto
"Roket kendali RKX100-LPN saat ini menggunakan material pipa baja tahan karat tanpa sambungan ASTM A312 TP 304L sebagai tabung bahan bakar. Material ini belum pernah dikarakterisasi untuk mengetahui apakah sifat mekanis dan struktur mikronya sesuai dengan spesifikasi. Selain itu, pengaruh panas pemhakaran terhadap karakteristik material tabung belum pernah dianalisa. Untuk itu dilakukan pengujian komposisi kirma, pengujian sifat mekanis yakni pengujian tarik dan kekerasan, pengamatan mikrostruktur dengan mikroskop optik dan SEM serta pengamatan fraktografi dari sampel uji tarik terhadap material tabung bahan bakar sebelum dan sesudah pembakaran.
Hasil penelitian menunjukkan bahwa komposisi material ini sesuai dengan standar ASTM A312 TP 304L. Proses pembakaran tidak menyebabkanperbedaan yang berarti baik dari segi sifat mekanis aupun mikrostroktur. Sampel sebelum pemhakaran menunjutkan karakteristik sebagai berikut: kekuatan tarik maksimum 582,65 MPa, kekuatan luluh 280,5 MPa. Elongasi 46%, kekerasan 141BHN dan ukuran butir ASTM 5,53, sedangkan sampel setelah pembakaran menunjukkan data sebagai berikut: kekuatan tarik maksimum 598,74 MPa, kekuatan luluh 292,4 MPa, elongasi 49%, kekerasan 141 BHN dan ukuran butir ASTM 5,45. Pengamatan fraktografi patah tarik dari sampel sebelum dan sesudah pembakaran menujukkan kakterislik patahan yang sama yakni patah ulet.
"
Depok: Fakultas Teknik Universitas Indonesia, 2004
S41346
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kendra Hartaya
"Telah dilakukan karakterisasi terhadap bahan penyulut pembakaran buatan Jerman. Bahan ini diperoleh dari perusahaan distributor PT Pudji Thajaja Industrial Corp di Medan. Karakterisasi meliputi analisis kualitatif dan analisis kuantitatif, penentuan nilai kalor, Titik Lebur, Panas fusi, Laju pembakaran dan peramalan mekanisme reaksi pembakaran.
Analisis kualitatif dengan metode difraksi sinar-x dan analisis kuantitatif dengan metode Kromatografi kolom secara gravimetri mendapatkan komponen penyusun bahan penyulut pembakaran, yaitu Paraffin wax 57,14 7b dan ammonium perklorat 42,86 %b. Sifat-sifat fisik yang dimiliki bahan bakar penyala tersebut adalah Titik lebur 64,8°C, Panas fusi -142,66 kJ/gr, Nilai kalor 9665,182 kal/gr, Laju pembakaran 0,7657 gr/menit, Kadar abu 3,8%.

Fast fire lighter fuel made in Germany has been characterized by x-ray diffraction method and gravimetric column chromatography. Fuel is obtained from the distributor company PT Pudji Thahaja Industrial Corp, in Medan. The characterization involves qualitative and quantitative analysis, determination of calorivic value, melting point, fusion heat, burning rate, and prediction of reaction mechanism.
The sample contains paraffin wax 57,14 %w, ammonium perchlorat 42,86 %w. The other character is melting point 64,8°C, fusion heat -142,66 kJ/gr, calorivic value 9665,182 cal/gr, burning rate 0,7657 gr/mnt, ash content 3,8% w.
"
Fakutlas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1997
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Amin Ilyas
"Produksi masif sel bahan bakar membran polimer (PEMFC) dibatasi oleh harga material yang tinggi serta proses manufaktur yang rumit. Dalam penelitian ini, nanokomposit berbasis polipropilena (PP) dibuat dengan pengisi tembaga nanopartikel (CuNP) dan grafit (G). Tiga jenis nanokomposit, disebut PP/CuNP, CuNP/PP, dan CuNP/PP/G, difabrikasi dengan metode pencampuran kimiawibasah dan fasa-padat. Kemungkinan penggunaan sampel-sampel sebagai material pelat bipolar diinvestigasi dalam penelitian ini. Hasil-hasil yang diperoleh menunjukkan bahwa kedua jenis pengisi mempengaruhi sifat optis, kelistrikan, dan mekanis dari nanokomposit. Seluruh PP/CuNP, dengan kandungan pengisi tunggal yang tidak dominan, didapati bersifat insulator dengan nilai energi celah pita (Eg) berkisar antara 5,93 - 4,26 eV dan nilai konduktivitas listrik (σ) yang sangat kecil (~0 S/cm). Sementara itu, pada CuNP/PP yang fraksi berat pengisi tunggalnya dominan, didapati seluruhnya bersifat semikonduktor dengan nilai Eg dan σ berada pada kisaran 2,24 - 2,34 eV dan 0,13 - 3,38 S/cm. Pada tahapan berikutnya, pengamatan pada nanokomposit hibrida CuNP/PP/G menunjukkan bahwa sebagian nanokomposit bersifat insulator sedangkan yang lainnya bersifat semikonduktor, dengan nilai Eg dan σ berada pada kisaran 1,77 - 11,70 eV dan 0,0005 - 2,65 S/cm.

The massive production of polymer electrolyte fuel cell (PEMFC) is restricted due to high material cost and complicated manufacturing process. In current research, the polypropylene (PP) based composites has been prepared with copper nanoparticle (CuNP) and graphite (G) as the fillers. Three types of nanocomposites, called PP/CuNP, CuNP/PP, and CuNP/PP/G, were fabricated by both chemical and solid-state mixing methods. The possibilities for bipolar plate material was investigated. The results show that both fillers affected the optical, electrical, and mechanical properties of the nanocomposites. All of PP/CuNPs, which fillers inside were not dominant, were observed as insulators with band gap energy values were in the range of 4.26 - 5.93 eV and very small electrical conductivities (σ = ~0 S/cm). On the contrary, all of CuNP/PPs, which had dominant filler phases, were observed as semiconductors with Eg and σ were in the ranges of 2.24 - 2.34 eV and 0.13 - 3.38 S/cm, respectively. Furthermore, for the CuNP/PP/Gs hybrid nanocomposites, it is found that some of CuNP/PP/Gs were insulators while others were semiconductors with Eg and σ were in the ranges of 1,77 - 11,70 eV and 0.00005 - 2.65 S/cm."
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1133
UI - Skripsi Open  Universitas Indonesia Library
cover
Siahaan, Mabe
"Roket diluncurkan untuk melakukan missi tertentu. Pada saat peluncuran, roket menahan beban dinamis, statis dan gaya. Keperluan tersebut menggunakan material tabung paduan Aluminium 2024, dan melakukan perancangan supaya relatif ringan serta dapat menahan beban tersebut, tapi hasilnya belum memadai. Supaya perancangan yang akan datang dapat berhasil, perlu dilakukan penelitian material tabung paduan Aluminium 2024. Penelitian yang dilakukan yaitu pemeriksaan material awal yang meliputi pengujian komposisi kimia, kuat tarik, kekerasan, impak dan metalografi. Selanjutnya dilakukan pemanasan spesimen dengan dapur pemanas pada temperatur 450 °C, 500 °C dan 550 °C dengan masing-masing spesimen ditahan selama 15 menit selanjutnya didinginkan di air, udara dan dalam dapur pemanas. Setelah itu dilakukan lagi pengujian kuat tarik, kekerasan, impak dan metallografi.
Dari penelitian diperoleh data yaitu untuk spesimen awal paduan aluminium 2024 mengandung unsur 0,464 Fe, 0,87 Mn, 4;802 Cu, 0,0234 Cr, 0,0672 Zn, 1;171 Mg dan 89,5 Al, δy- 37,80 kg/mm2, 6? -47,40 kg/mm2, HV-157,435 dan Ur-19,19 Joule/cm2. Untuk spesimen yang mengalami perlakuan panas nilai ay yang terbesar adalah δy-42,77 kg/mm2 dan terkecil adalah δy-18,76 kglmm2, 6u yang terbesar adalah δu-52,33 kg/mm2 dan terkecil adalah 6?-24,70 kg/mm2, HV yang terbesar adalah HV'-100,41 dan terkecil adalah HV-'47,67 dan Ur yang terbesar adalah Ur-22,27 Joule/cm2 dan Ur-22,32 Joule/cm2 sedangkan terkecil adalah Ur-16,37 Joule/cm2. Dari data tersebut dapat. disimpulkan bahwa material tabung adalah paduan Aluminium 2024, dan akibat dari perlakuan panas yang diterima material telah mengubah. kuat tank, kekerasan, energi impak dan metalografi dari material tersebut.

Rocket is launched for certain mission. When it is launched, the rocket is to support the dynamic and static load and the force. This requires to make use of the cylindrical material Aluminum alloy 2024, and is to do the design where the material is relatively light and can support the loads however result is not perfect. In order to make a good design, it is important to study cylindrical Aluminum alloy 2024. The research involves a preliminary test of the material which consists of a chemistry composition, tensile strength, hardness, impact and metallography. The specimens were then heated with furnace at the temperatures 450 °C, 500 °C and 550 °C, with each specimens were retained as long as 15 minutes, then it's cooled in water, air and in furnace. After that, the test of tensile strength, hardness, impact and metallography were performed again.
From the research are finding of a results for a preliminary specimen of Aluminum alloy 2024 which consists of a 0,464 Fe, 0,87 Mn, 4,802 Cu, 0,0234 Cr, 0,0672 Zn, 1,171 Mg and 89,5 Al, ay-37,80 kg/mm2, au-47,40 kg/mm2, HV-157,435 and Ur-19,19 Joule/cm2. For the specimens were (hen heat treatment, the biggest value of ay is δy-42,77 kg/mm2 and the smallest is ay--18,76 kg/mm2, the biggest value of au is δu-52,33 kg/mm2 and the smallest is δu --24,70' kg/mm2, the biggest value of HV is HV-100,41 and the smallest is HV-47,67 and the biggest value of Ur is Ur-22,27 Joule/cm2 and Ur-22,32 Joule/cm2 and the smallest is Ur-16,37 Joule/cm2. The results are that the Cylinderis of material was Aluminum alloy 2024, and the heat treatment which received was changed the tensile strength, hardness, impact energy and metallography of materials.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1999
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Yendha Putri Wulandari
"Pemodelan kinetika oksidasi dan pembakaran bahan bakar bensin dikembangkan untuk memperoleh bahan bakar yang rendah polutan, heating value tinggi dan aman untuk mesin. Mekanisme reaksi terdiri dari 1314 reaksi elementer dan 1006 spesies. Simulasi dilakukan pada rentang temperatur 700 K - 1000 K, tekanan 5, 12 dan 40 bar, dan rasio ekivalensi 0,8; 1,0 dan 1,5. Simulasi menghasilkan profil waktu tunda ignisi, profil konsentrasi dan profil temperatur.
Hasil simulasi menunjukkan bahwa waktu tunda ignisi paling cepat tercapai pada tekanan 40 bar dan temperatur 1000 K, serta rasio ekivalensi 0,8. Profil temperatur menunjukkan energi paling besar dihasilkan pada kondisi tekanan 40 bar, temperatur 1000 K dan rasio ekivalensi 0,8. Kemudian, profil konsentrasi menunjukkan bahwa rasio ekivalensi 1,5 menghasilkan polutan CO dan CO2 paling rendah tetapi juga menghasilkan polutan toluena. Penurunan konsentrasi toluena 10% menghasilkan waktu tunda ignisi lebih cepat, polutan lebih rendah dan energi lebih rendah. Penurunan konsentrasi isooktana 10% menghasilkan waktu tunda ignisi lebih lambat dan energi lebih tinggi.

Kinetic modelling of oxidation and combustion of gasoline has developed to get fuel which are low pollutant, high heating value and safe for engine. The reaction mechanism features 1314 elementary reactions and 1006 species. Simulation is conducted at range temperature 700 K - 1000 K, pressures 5, 12 and 40 bar, and equivalence ratio 0,8; 1,0 and 1,5. The simulation produces ignition delay time profiles, fuel concentration profiles and temperature profiles.
Result of simulation indicates that the fastest ignition delay time is reached at 40 bar and 1000 K, and at equivalence ratio 0,8. Temperature profiles indicate that the highest energy is produced at 40 bar, 1000 K and equivalence ratio 0,8. Then, fuel concentration profiles indicate that rich fuel mixture produces the lowest of CO and CO2 but it also produces toluene pollutant. Decreasing of 10% toluene produces faster ignition delay time, lower pollutants and lower energy. Decreasing of 10% isooctane produces slower ignition delay time and higher energy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52187
UI - Skripsi Open  Universitas Indonesia Library
cover
Antonius Albert Theo
"Penelitian pemodelan kinetika dan oksidasi pembakaran bahan bakar bensin komersial bertujuan untuk membuat suatu mekanisme pembakaran yang valid dan representatif sehingga dapat digunakan untuk memprediksi ignition delay time, polutan yang dihasilkan, serta pengaruh temperatur, tekanan dan rasio ekivalensi pada reaksi oksidasi dan pembakaran suatu bahan bakar. Penambahan etanol berguna untuk menambah kandungan oksigen di dalam bahan bakar yang diharapkan mampu memperbaiki kualitas bahan bakar.
Penyusunan mekanisme reaksi dilakukan dengan penelusuran literatur. Model yang telah disusun akan divalidasi dengan menggunakan data ekperimen yang dikeluarkan oleh Petrobras pada tahun 2005 yang diperoleh dengan Rapid Compression Machine, pada rentang temperatur 850-940 K dan tekanan 11 - 16 bar. Mekanisme yang telah divalidasi, digunakan untuk simulasi dengan variasi tekanan awal, rasio ekuivalensi, dan komposisi etanol.
Perangkat lunak yang digunakan adalah Chemkin 3.7.1. Mekanisme reaksi yang disusun berhasil memprediksi eksperimen. Pada variasi tekanan awal, saat suhu awal 865 K dan tekanan awal 13 bar ignisi terjadi pada saat 94,7 milidetik dan energi yang dihasilkan sebesar 54,01 kalori/cm3. Pada suhu yang sama, ketika tekanan diubah menjadi 5 bar dan 40 bar, idt menjadi 351 milidetik dan 22,3 mili detik serta energi panas sebesar 9,33 kalori/cm3 dan 501,7 kalori/cm3.
Untuk variasi rasio ekuivalensi, pada kondisi stoikiometri, suhu awal 865 K dan tekanan 13 bar, idt terjadi saat 94,7 milidetik dan energi yang dihasilkan sebesar 54,01 kalori/cm3. Ketika rasio ekuivalensi diubah menjadi 0,5 dan 1,2, maka idt menjadi 29,1 milidetik dan 152 milidetik serta panas masingmasing sebesar 328,1 kalori/cm3 dan 18,3 kalori/cm3. Untuk variasi etanol, kondisi awal saat kandungan etanol 10% di dalam bahan bakar, tekanan awal 13 bar, dan suhu awal 865 K, idt masing-masing sebesar 94,7 milidetik dan energi 53,01 kalori/cm3. Ketika kandungan etanol diubah menjadi 5% dan 20%, maka idt masing-masing menjadi 104 milidetik dan 80 milidetik serta panas sebesar 69,3 kalori/cm3 dan 50,1 kalori/cm3.

The main goals of research on the modeling of kinetic and oxidation of commercial fuel are to create a valid and representative reaction mechanism that can be used to predict the profile of ignition delay time, exhaust pollutants, and behaviors of oxidation reaction. Additional ethanol as oxygenate in fuel blend could increase oxygen content in combustion process.
Model is arranged by literature study and has to be validated with an experiment data from Petrobras in 2005. Experiment data was obtained from rapid compression machine with initial temperature range 850-940 K, initial pressure range 11-16 bar. That valid mechanism will be used for pressure, equivalent ratio, and ethanol variation simulation.
The softwere will be used is Chemkin 3.7.1. The new reaction mechanism can predict the experiment data successfully. In initial pressure variation, at initial temperature and pressure 865 K and 13 Bar, fuel will ignite at 94.7 msec with 54.01 cal/cm3 heat production. On the same initial temperature, when pressure is changed to 5 bar and 40 bar, ignition becomes 351 msec and 22.3 msec with heat production 9.33 cal/cm3 and 501.7 cal/cm3.
In equivalent ratio variation, at stoichiometric condition, fuel will ignite in 94.7 msec with 54.01 cal/cm3 heat production. When equivalent ratio is change to 0.5 and 1.2, the ignition becomes 29.1 msec and 152 msec with each heat production 328.1 cal/cm3 dan 18.3 cal/cm3. In ethanol variation, at ethanol composition 10%, initial pressure 13 bar and initial temperature 865 K, fuel will ignite at 94,7 msec and 54.01 cal/cm3 heat production. When ethanol composition is changed to 5% and 20%, the ignition becomes 104 msec dan 80 msec with heat production 69,3 cal/cm3 and 50,1 cal/cm3.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51729
UI - Skripsi Open  Universitas Indonesia Library
cover
Sinaga, James
Depok: Fakultas Teknik Universitas Indonesia, 1996
S36684
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iim Rohiman
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1998
S29959
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cepi Supriyadi
"Gasolin merupakan bahan bakar kendaraan bermotor sebagai penyumbang pencemaran udara paling besar akibat produk pembakaran yang dihasilkannya. Oleh karena itu, dilakukan usaha untuk meminimalisasi pencemaran yang dihasilkan yaitu dengan melakukan rekayasa proses oksidasi dan pembakaran terhadap komponen penyusunnya yang salah satunya adalah sikloheksana. Rekayasa dari proses oksidasi dan pembakaran itu sendiri meliputi kajian terhadap waktu tunda ignisi dan profil konsentrasi spesi sehingga diperoleh prediksi waktu tunda ignisi dan profil konsentrasi pada berbagai kondisi operasi.
Model kinetika reaksi sikloheksana yang digunakan dalam proses rekayasa divalidasikan terhadap data percobaan Lemaire dkk dalam rapid compression machine untuk waktu tunda ignisi pada rentang temperatur 650 - 900 K, tekanan 8 atm dan 12,5 atm dengan rasio ekivalensi stoikiometri dan data percobaan dari El Bakali dkk dan Voisin dkk dalam jet-stirred reactor untuk profil konsentrasi spesies pada rentang temperatur tinggi (750 - 1150 K), rasio ekivalensi , tekanan 10 atm, residence time nya 0,5 detik serta meggunakan 99% N2 sebagai diluen.
Secara umum, validasi mekanisme menunjukkan bahwa model kinetika telah mereproduksi hasil percobaan dengan baik. Hasil analisis sensitivitas yang dilakukan pada setiap kondisi operasi pembakaran dapat mengidentifikasi reaksi-reaksi yang paling penting dan relevan dalam kondisi tersebut. Hasil simulasi jet-stirred menunjukkan bahwa profil konsentrasi spesi memberikan produk pembakaran yang baik pada tekanan dan temperatur tinggi (25 atm dan 1100 K) untuk campuran stoikiometri. Begitu juga dengan hasil simulasi rapid compression machine menunjukkan bahwa ignisi tercapai pada tekanan dan temperatur awal yang tinggi (25 atm dan 1100 K).

Gasoline as a vehicle fuel is the largest contributor for air pollutions that caused by the combustion product. Therefore, it can be done for minimizing a pollution with make an oxidation and combustion engineering process toward cyclohexane as a gasoline component. The oxidation and combustion engineering process including ignition delay time and concentration profile of species. So we will get the ignition delay time and the concentration profile of species predictions for various operating conditions.
The kinetics model mechanisms used in an oxidation and combustion engineering process was validated toward the experiment data Lemaire et al in rapid compression machine for ignition delay time with stoichiometric mixtures, range temperature 650 ' 900 K, pressure 8 atm and 12.5 atm and then the experiment data El Bakali et al and Voisin et al in jet-stirred reactor for the concentration profile of species in high-temperature regimes (750 ' 1150 K), with equivalence ratios , the residence time is 0.5 second and at 99% dilution by nitrogen.
Generally, result of validity mechanisms indicates that kinetics model has reproduced result of attempt carefully. Sensitivity analysis result in each operating condition and combustion can identify most important reactions and relevant under the condition. Simulation result of jet-stirred reactor indicates that the species concentration profile of perfect combustion product happen at high initial pressure and temperature (25 atm and 1100 K) for stoichiometric mixture. Then, result of simulation rapid compression machine indicates that ignition is reached by swiftly at high initial pressure and temperature (25 atm and 1100 K).
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51907
UI - Skripsi Open  Universitas Indonesia Library
cover
Widi Agsanto
"Bahan bakar gasolin mengandung ratusan hingga ribuan campuran hidrokarbon. Dalam hal ini bahan bakar gasolin memiliki fraksionasi hidrokarbon C4-C12 yang akan bereaksi secara beragam dengan oksigen dalam udara untuk membentuk karbondioksida, karbon monoksida dan uap air sebagai produk akhir sehingga perlu dilakukan pengoptimalan pembakaran yang terjadi di ruang bakar yang menghasilkan daya energi lebih besar dengan konsumsi bahan bakar yang lebih irit. Disamping itu pencemaran gas buang yang tidak sempurna menjadi berkurang.
Penelitian ini bertujuan mempelajari prilaku hidrokarbon parafin undekana (C11H24) dengan menggunakan acuan profil dekana yang diperuntukan untuk mempelajari sifat kimia pembakaran undekana yaitu dengan cara memahami kinetika kimia pembakaran sebagai prilaku tunggal yang terkandung dalam bahan bakar, sehingga dapat mengetahui prilaku bahan bakar tersebut dan dalam mengembangkan model kinetika kimia pembakaran dan oksidasi undekana dengan menggunakan konsep aturan Muharam.
Model kinetika undekana yang diperoleh melalui pengembangan dari model dekana, melakukan verifikasi model kinetika dekana sebagai sub komponen model kinetika undekana dengan menggunakan data percobaan yang diperoleh untuk profil ignition delay times dari eksperimen Pfahl et al. pada reaktor shock tube dengan rasio bahan bakar 0,5 - 2, rentang temperatur 700 K - 1300 K, tekanan 13,5 bar dan 50 bar.
Secara umum, hasil pengembangan mekanisme menunjukkan bahwa model kinetika telah mereproduksi hasil percobaan dengan baik dan dilakukan simulasi Jet Stirred menunjukkan bahwa ignisi tercapai pada tekanan dan temperatur awal yang tinggi. Begitu juga dengan simulasi Shock Tube menunjukkan bahwa profil konsentrasi spesi memberikan produk pembakaran yang baik pada tekanan dan temperatur tinggi untuk campuran Lean Fuel.

Gasoline fuel contain hundreds hydrocarbon mixture. Gasoline fuel mechanism keeps hydrocarbon C4-C12 fractional part which will give various react to the oxygen in the air to form carbondioxide, carbonmonoxide and H2O as the final production. Then, it will produce bigger energy to the economize on gasoline fuel consumption. Beside that, a pollution of incomplete gas exhaust could be minimized.
This research is aimed to study the C11H24 behavior as one of gasoline fuel composition, which applies modelling reference of decane and intended for studying of decane combustion. Way by understanding, A combustion of chemical kinetic as a single mechanism in fuel. To develop a kinetic model of chemical combustion undecane by applying a simple rule of muharam concept.
Model of undecane kinetic is taken from decane model development, to verify decane kinetic model as sub component of undecane kinetic model by applying of the existing experiment data to form a profile of ignition delay times from pfahl et al experiment at a jet stirrer by the ratio of fuel is about 0.5-2.0, temperature range is about 700-1300 K, pressure is about 13.5 and 50 bar.
Generally, a result of mechanism development shows a kinetic model does a reproduction of well experiment output and it is done by jet stirred practice and show an ignition will reach the former high pressure and temperature. A simulation of shock tube likewise shows that a concentration profile gives a well combustion production in high prsssure and temperature of lean fuel mixture.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51787
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>