Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 162944 dokumen yang sesuai dengan query
cover
Vozi Andrian
"ABSTRAK
Penelitian ini bertujuan untuk mengetahui pengaruh penambahan Clay dalam hal ini China Clay terhadap sifat porositas dan kekerasannya pada membran keramik berbasis Zeolit, Clay dan Talc dalam berbagai variasi komposisi yang berbeda-beda.
Dalam penelitian ini, sampel dibuat dengan mengkompaksi serbuk-serbuk Zeolit, Clay dan Talc dengan gaya tekanan sebesar 100.000 N yang sebelumnya dilakukan pencampuran dengan air, drying dan sieving. Bakalan hasil kompaksi tersebut kemudian disinter pada temperatur 1100°C selama 1 jam dengan kecepatan pemanasan dapur scbesar 15 °/ menit.
Dari hasil penelitian diperoleh bahwa membran keramik yang dihasilkan, memiliki nilai densitas yang cukup rendah. Nilai densitas terkecil dihasilkan oleh membran keramik dengan komposisi 70% Zeolit, Clay 20% dan 10% Talc sebesar 1.569 gr/cm3, sedangkan nilai densitas terbesar dihasilkan oleh membran keramik dengan kandungan 85% zeolit, 5% Clay dan 10% Talc sebesar 2.022 gr/cm3.
Untuk porositas, nilai porasitas tertinggi dihasilkan oleh membran keramik dengan komposisi 65% Zeolit, 25% Clay dan 10% Tale sebesar 33,8 7%. Sedangkan nllai % porositas terendah dihasilkan oleh sampel dengan komposisi 85% Zeolit.
5% Clay dan 10% Talc sebesar 22.22%. Nilai densitas terkecil dihasilkan oleh sampel n0.6 dengan komposisi 70% Zeolit, 20% Clay dan 10% 12111; sebesar 1.569 gr/cm3, sedangkan nilai densitas terbesar dihasillkan oleh membran keramik dengan komposisi 85% Zeolit, 5% Clay dan 10% Talc sebesar 2.022 gr cm3.
Sedangkan untuk nilai kekerasan tertinggi dihasilkan oleh sampel yang memiliki komposisi 90% Zeolit dan 10% Talc dengan nilai kekerasan sebesar 263 kg/mm3 dan nilai kekerasan terendah dihasilkan oleh membran keramik yang memiliki komposisi 70% Zeolit, 20% Clay dan 10% Talc dengari nilai kekerasan sebesar 68,8 kg/mm2. Dengan kata lain pengaruh penambahan Clay dalam hal ini China Clay menurunkan sifat fisik dan mekanis dari membran keramik berbasis Zeolit, Clay dan Talc.

"
2001
S41529
UI - Skripsi Membership  Universitas Indonesia Library
cover
Li, Yonggang
Beijing: China International Press, 2009
SIN 553.610 51 LIY c (1)
Buku Teks  Universitas Indonesia Library
cover
Rudy Priyanto
"ABSTRAK
Keramik adalah salah satu material yang pesat perkembangannya bailc a'ari sisi telmalagi maupun aplilcasi. Eskalasi material ini dnzerkirakan akan banyalc mensubstitusi penggunaan logam sebagai material engineering pada masa menalatang. Salah sara ap/iltasi yang lcini dirambah bahan lceramilr adalalz teknologi membran. Pengembangan material lcerarnik sebagai balzan penyusun membran banyal: dilakukan mengingaz masih minimnya penggzmaan material inorganik, seperti keramilc, sebagai membran yang masih daminasi oleh_ material arganik Quolimerj. Upaya perbai/can syat dan lraralcteristilc membran organik, terurama keramik, ter-us dilakukan untuk mendapatkan sifat-s#`at yang lebilz baik dan dapat mensubstitusi penggunaan material organik (palimer) sebagai bahan penyz/sun menzbran secara luas_
Dalam penelitian ini, yang berrujuan untuk mengetalzui pengarulz penamba/zan sililta murni pada membran keramilc, didapatkan hasil ba/:wa pengaruh penarnbalzan silika murni ke dalam mineral zeolit (66.67 % SIO2)
memberilcan peninglcatan yang signjilcan pada six! fisik dan melcanis membran keramilc zeolit yang dihasilkan. Proses telcnologi serbuk yang dilakulcan pada pembuatan membran ini menggunalcan beban kampalcsi sebsar 100 Ion dan temperatur pemanasan 1050 ?C a'engan walctu talran 2 jam. Hasilnya adalalz teijfadinya peningkaran lcekerasan dan penunman porositas pada membran tersebut, terutama pada penambahan /radar silika (Si02j diatas I5 %. Urztuk lcekerasan paala penambalzab 25 % SiO; menghasilkan nilai kelcerasan 445 I/HM jauh lebih keras dibandinglcan zeolit murni sebesar 157 I/HN atau tejadi lcenaikan sebesar 64. 71 %, demikian pula halnya dengan porositas, yang teijadi penurunan lzingga mencapai 7.1 % pada penanzbahan 25 % silika.

"
2001
S41544
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdul Rosid
"ABSTRAK
Pemanfaatan keramik sebagai material alternatif selain logam, masih terus di kembangkan. Karena keramik memiliki sifat-sifat mekanik yang baik, seperti kekerasan dan ketangguhan yang tinggi serta stabilitas termal dan ketahanan aus yang tinggi serta stabilitas termal dan ketahanan aus yang tinggi pula. Keramik yang dibuat adalah dengan memadukan zeolit sebagai matrix, clay dan talk sebagai additiv. Zeolit adalah mineral anorganik yang istimewa karena strukturnya yang unik dan memiliki porositas yang teratur , tersusun atas Silikat SIO44- dan Alumina AlO45-. Zeolit banyak digunakan sebagai pengikat (binder) dengan kandungn alumina Al2O3. Silikat SiO4 dan H2O yang tinggi. Sedangkan Talc adalah mineral nonclay yang memiliki struktur kristal mirip dengan mineral clay. Talk berfungsi sebagai penstabil dimensi, penstabil temperatur dan juga sebagi whitewarebodies.
Penelitian ini bertujuan untuk mengetahui pengaruh penambahan talc terhadap sifat-sifat keramikhasil paduan zeolit, clay, dan tallc dengan komposisi clay yang tetap dan komposisi talc yang bertambah dari 5%-40%. Sedangkan komposisi zeolit yang berkurang dari 85%-50%. Proses pembentukan dilakukan dengan metode kompaksi (100.000N). Proses sintering dengan temperatur 1100 ºC selama 1 jam. Kemudian dianalisa pengaruh penambahan talc tersebut terhadap densitas, porositas dan kekerasan.
Hasil penelitian menunjukkan penambahan talc cenderung meningkatkan kekerasan. Pada komposisi (20% Talc; 10% Clay; 70% zeolit) dicapai kekerasan tertinggi sebesar 536 VHN, menaikan densitas dan menurunkan porositas. Porositas tertinggi dicapai pada komposisi (40% talc;10% clay;50% zeolit) sebesar 51,43 %. Dengan karakteristik yang ada diharapkan dapat digunakan pada industri keramik yang memanfaatkan kekerasan atau porositas yang optimal sebagai membran keramik.

"
2001
S41542
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tri Silvia Ningsih
"Dalam penelitian ini telah berhasil dilakukan sintesis fotokatalis Ni2+-ZnO berbasis zeolit alam dengan teknik presiptasi. . Sampel fotokatalis Ni2+ZnO berbasis zeolit alam dikarakterisasi dengan melakukan serangkaian pengujian seperti X-ray Diffraction (XRD), ultraviolet-visible spectroscopy, fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray analysis (EDX). Larutan metal jingga digunakan sebagai katalis untuk mengetahui aktivitas fotokalisis dari sampel. Hasil penelitian menunjukkan bahwa zeolit dapat meningkatkan aktivitas dan efisiensi fotokatalis ZnO, karena memiliki kemampuan absorbance yang tinggi karena memiliki struktur berpori. Ion doping yang diberikan juga dapat meningkatkan aktivitas fotokatalis karena akan menahan laju rekombinasi. Selain itu, semakin besar konsentrasi ion yang didoped, maka semakin kecil energi celah pita yang membuat semakin mudahnya eksitasi elektron dari pita valensi ke pita konduksi.

In the current research Ni2+-ZnO photocatalyst has been performed, using a precipitation technique. The as prepared materials were characterized by X-ray Diffraction (XRD), ultraviolet-visible spectroscopy, fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray analysis (EDX). Methyl Orange solution was used to estimate the photocatalytic activity of the samples. The research showed that zeolite enhance photocatalytic activity and efficiency of ZnO because of its high absorbance ability and its porous structure. Ion doped also enhance photocatalytic activity because inhibite the recombination rate. In addition, higher concentration of ion doped, lower band gap energy making electron easily excitate."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1868
UI - Skripsi Open  Universitas Indonesia Library
cover
"Pada penelitian ini digunakan zeolit klinoptiiolit alam sebagai bahan dasar kata|is_ Proses aktivasi di-Iakukan dalam dua cara yang bebeda, yaitu proses pertukaran kation diikuti dengan dealuminasi, Serta proses aktivasi dengan urutan sebaliknya Salah satunya diujikan sebagai katalis sadangkan yang Iain sebagai support untuk katalis ZnOICr2O3 yang penyisipannya dilakukan dengan metode kopresipitasi.
Sebelum dilakukan uji coba pada reaksi dekomposisi n-heksana, dilakukan karakterisasi iuas permukaan, komposisi kation dan kristaIinitas. Uji reaksi dilakukan dengan reaktor unggun tetap (kontinu) pada Iaju alir gas carrier N2 sebesar 30 mllmenit dan berat katalis masing-masing 0,1 gram.
Zeolit klinoptilolit yang proses aktivasinya diawali dengan pertukaran kation, pada reaksi dekomposisi n-heksana memgrikan konversi mulai signifikan pada temparatur reaksi mulai mendakati 450 °C dan menghasilkan sanyawa propena Serta isomamya. Pada suhu 470 °C, konversinya mencapai 10,5%. Sedangkan zeolit kiinoptilolit yang proses aktivasinya diawali dengan dealuminasi, sampel katalis Iebih cepat terdeaktivasi sekalipun memiliki karakter permukaan yang Iebih baik_
Katalis Zn0!Cr2O3!zeo|it menghasilkan konversi yang mulai signitikan pada temperatur reaksi mendekati 400 “C dan mamberikan produk senyawa heksena sarla isomernya. Pada 470 °C, konversinya mencapai 22%."
Fakultas Teknik Universitas Indonesia, 1996
S48893
UI - Skripsi Membership  Universitas Indonesia Library
cover
Vino Hasyim
"Dalam penelitian ini telah dilakukan fabrikasi nanopartikel kompleks praseodimium(III)-EDTA (etilenadiaminatetraasetat) dengan metode represipitasi dan penguapan. Kristal besar dan nanopartikel kompleks Pr(III)-EDTA sebanyak 2% (b/b) digunakan sebagai komponen minor aktif pada preparasi katalis Pr(III)-EDTA/Zeolit dengan metode impregnasi pada suhu 60�C. Zeolit yang digunakan adalah zeolit alam aktif klinoptilolit. Pr(III)-EDTA/Zeolit digunakan sebagai katalis untuk meningkatkan bilangan oktana pada gasoline. Nanopartikel Pr(III)-EDTA hasil fabrikasi dikarakterisasi dengan Transmission Electron Microscopic (TEM). Data TEM menunjukkan nanopartikel yang diperoleh memiliki diameter antara 5,8 hingga 28,6 nm dan panjang 149,8 nm. Luas permukaan pada zeolit sebelum dimodifikasi adalah 30,9 m2/g. Setelah dimodifikasi dengan kristal besar Pr(III)-EDTA terjadi penurunan luas permukaan menjadi 24,1 m2/g sedangkan pada penambahan nanopartikel Pr(III)-EDTA menjadi 9,9 m2/g. Hal ini menunjukkan sebagian besar pori-pori zeolit banyak terisi oleh nanopartikel Pr(III)-EDTA dibanding dengan kristal besar Pr(III)-EDTA. Analisis XRF menunjukkan bahwa di dalam katalis dengan komponen aktif kristal besar Pr(III)-EDTA dan komponen aktif nanopartikel Pr(III)-EDTA terdapat Pr(III) masing-masing sebanyak 0,4175 % dan 0,5236 %.
Hasil ini membuktikan bahwa komponen aktif nano partikel lebih banyak masuk kedalam pori-pori zeolit klinoptilolit. Pengukuran bilangan oktana dengan octane meter SHATOX SX-200 menunjukkan peningkatan bilangan oktana pada gasoline untuk katalis kristal besar Pr(III)-EDTA/Zeolit dan katalis nanopartikel Pr(III)-EDTA/Zeolit masingmasing dari 88, 2 menjadi 89,2 dan 89,6 atau terjadi kenaikan 1 dan 1,4. Sedangkan penambahan katalis zeolit tanpa modifikasi meningkatkan bilangan oktana dari 88, 2 menjadi 88,8 terjadi kenaikan 0,6. Peningkatan bilangan oktana ini disebabkan adanya kenaikkan % peak area isooktana dan penurunan % peak area n-oktana di dalam gasoline yang ditunjukkan melalui analisis menggunakan GC-MS. Kemungkinan besar hal inilah yang meningkatnya bilangan oktana pada gasoline.Dari penelitian ini bisa disimpulkan bahwa katalis Pr(III)-EDTA dapat digunakan untuk meningkatkan bilangan oktana gasoline dengan keaktifan berturut-turut adalah katalis nanopartikel Pr(III)-EDTA/Zeolit, katalis kristal besar Pr(III)-EDTA/zeolit dan katalis zeolit.

In this research Pr(III)-EDTA (ethylene diamine tetra acetate) complex has been fabricated using reprecipitation and vaporization method. Bulk crystal Pr(III)-EDTA complex and nanoparticle 2 % (wt/wt) used as the active minor component for Pr(III)-EDTA/Zeolite catalyst preaparation through impregnation method at 60�C. Zeolite that used in this research is the natural active clinoptilolite zeolite. Pr(III)-EDTA/Zeolite use as catalyst for increasing the octane number of gasoline. The fabrication nanoparticle Pr(III)-EDTA result, characterized by Transmission Electron Microscopic (TEM). TEM result indicate that the obtained nanoparticle have 5.8-28.6 nm in diameter and 149.8 in length. Initial surface area of zeolite is 30.9 m2/g and after modification with bulk crystal Pr(III)-EDTA the surface area is decreasing to 24.1 m2/g addition meanwhile with nanoparticle Pr(III)-EDTA has decrease the surface area to 9.9 m2/g, where this indicate that most of zeolite pores filled more by nanoparticle Pr(III)-EDTA than bulk crystal Pr(III)-EDTA. XRF analysis shows that in catalyst with the active component nanoparticle Pr(III)-EDTA and bulk crystal Pr(III)-EDTA contain Pr(III) 0.4175% and 0.5236 % respectively.
The result proved that clinoptilolite zeolite pores has filled more by nanoparticle active component. The octane number measurement using octane meter SHATOX SX-200 give result the gasoline octane number increasing for bulk crystal Pr(III)-EDTA/zeolite catalyst and nanoparticle Pr(III)-EDTA/zeolite catalyst from 88.2 to 89.2 and 89.6 respectively or in the word it rise as much as 1 and 1.4. in another hand zeolite catalyst addition without modification increase octane number from 88.2 to 88.8 and rise as much as 0.6. This octane number increasing cause of the raising percentage of isooctane peak area and the reduction percentage of n-octane peak area in gasoline analyzed by GC-MS. It is likely being the causation of octane number increasing in gasoline. In conclusion, Pr(III)-EDTA catalyst can be used to increase octane number in gasoline with the activity in series nanoparticle Pr(III)-EDTA/zeolite catalyst, bulk crystal Pr(III)-EDTA/zeolite catalyst and zeolite catalyst.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S710
UI - Skripsi Open  Universitas Indonesia Library
cover
Syafira Deani Tiaradiba
"ABSTRAK
Dalam proses co-pyrolysis, Polipropilen berfungsi untuk menyingkirkan oksigen sehingga yield fraksi non-polar (non-teroksigenasi) menjadi lebih tinggi. Namun, kemampuan PP untuk menyita oksigen masih rendah karena hemiselulosa dan selulosa terurai sebagian besar pada suhu di bawah 400oC, sedangkan PP sebagian besar di atas 400oC. Oleh karena itu, keduanya hanya memiliki interval suhu dekomposisi secara bersamaan yang kecil untuk memungkinkan interaksi antara bonggol jagung dan PP. Dalam penelitian ini, katalis diperkenalkan pada proses co-pyrolysis untuk mengurangi suhu terendah dekomposisi massa PP menjadi kurang dari 400oC agar meningkatkan interval suhu dekomposisi bersamaan. Katalis zeolit diteliti dengan memvariasikan tipenya yakni alam dan sintetik (beta)​​ yang dilakukan pada 3 rasio komposisi bonggol jagung dan plastik polipropilena, yaitu 0%:100%, 50%:50%, dan 100%:0%. Proses slow co-pyrolysis berlangsung di reaktor tangki berpengaduk, dengan suhu akhir 500oC, holding time 10 menit, heating rate 5oC/menit, dan total massa umpan 250 gram. Hasil penelitian ini menunjukkan terdapat pengaruh katalis baik zeolit alam maupun zeolit beta terhadap yield dan komposisi bio-oil hasil slow co-pyrolysis bonggol jagung dan plastik polipropilena. Dengan catalytic pirolisis, yield bio-oil cenderung menurun untuk semua variasi komposisi. Sebaliknya, yield char dan non condensable gas cenderung meningkat. Sedangkan, komposisi yang dominan dengan adanya katalis ialah alkana pada non polar dan metoksi pada H-NMR polar juga keton pada C-NMR polar. Pada produk bio-oil nonpolar, baik zeolit beta, zeolit alam, dan non katalis memiliki nilai branching index masing- masing yaitu 0,997; 1,052; dan 1,054 yang menunjukkan bio-oil nonpolar memiliki rantai karbon lurus dengan cabang lebih banyak apabila dibadingkan dengan bahan bakar komersial. Selain itu, nilai HHV yang dimiliki bio-oil diatas nilai produk bahan bakar bensin komersial yakni 47,93 untuk zeolit alam dan 47,95 untuk zeolit beta.

ABSTRACT
In the process of co-pyrolysis, Polipropylene serves to get rid of oxygen so that the yield of non-polar (non-oxygenated) fractions becomes higher. However, the ability of PP to confiscate oxygen is still low because hemicellulose and cellulose decompose mostly at temperatures below 400oC, while PP is mostly above 400oC. Therefore, both of them only have small decomposition temperature intervals to allow interaction between corn cobs and PP. In this study, catalysts were introduced in the co-pyrolysis process to reduce the lowest temperature of PP mass decomposition to less than 400oC in order to increase the intervals of concurrent decomposition temperatures. Zeolite catalysts were investigated by varying the types of natural and synthetic (beta) which were carried out at 3 ratios of corncob composition and polypropylene plastic, namely 0%: 100%, 50%: 50%, and 100%: 0%. The slow co-pyrolysis process takes place in a stirred tank reactor, with a final temperature of 500oC, a holding time of 10 minutes, a heating rate of 5oC / minute, and a total feed mass of 250 grams. The results of this study indicate that there are effects of catalysts both natural zeolite and beta zeolite on the yield and composition of bio-oil resulting from slow co-pyrolysis of corncob and polypropylene plastic. With catalytic pyrolysis, bio-oil yield tends to decrease for all variations in composition. Conversely, the yield of char and non-condensable gas tends to increase. Meanwhile, the dominant composition in the presence of a catalyst is alkane for non-polar and metoxy for H-NMR polar also ketone for C-NMR polar. In nonpolar bio-oil products, both beta zeolite, natural zeolite, and non-catalyst have a branching index value of 0.997; 1,052; and 1,054 which shows that non-polar bio-oil has more straight carbon chains with branches must be compared with commercial fuels. In addition, the HHV value of bio-oil above the value of commercial gasoline fuel products is 47.93 for natural zeolite and 47.95 for beta zeolite."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farid Mifthahul Rozaq
"Penelitian ini dilakukan untuk mengetahui pengaruh temperatur kalsinasi terhadap morfologi dan karakteristik adsorpsi fisik dari Kaolin Belitung. Kaolin ini dipersiapkan sebagai bahan baku Zeolit. Pada penelitian digunakan Kaolin yang berasal dari Badau, Pulau Belitung, Provinsi Kepulauan Bangka Belitung. Kaolin tersebut kemudian diaktivasi menggunakan NH4Cl dengan variasi konsentrasi 0,5, 1, dan 2 M selama 24 jam menggunakan magnetic stirrer. Setelah itu sampel dinetralkan dan dikeringkan. Sampel yang kering kemudian digerus, diayak, dan dikalsinasi pada variasi temperatur 300, 400, 500, 600, 700, dan 800°C selama 3 jam. Hasil percobaan menunjukkan tidak ada pengaruh dari variasi konsentrasi NH4Cl yang digunakan. Sedangkan pengaruh temperatur kalsinasi terhadap morfologi Kaolin dapat teramati secara signifikan pada temperatur ≥600°C.

The goal of this study is to understand the effects of calcination temperature on morphology and physical adsorption characteristics of Belitung Kaolin. This kaolin is prepared for Zeolite raw materials. In this work, Kaolin was from Badau, Belitung, Islands of Bangka Belitung Province. Kaolin was activated using NH4Cl with concentration variation of 0,5, 1, and 2 M for 24 h using magnetic stirrer. After that, the samples were neutralized and dried. The dried samples then hammered, shieved, and calcined at 300, 400, 500, 600, 700, and 800°C for 3 hours. The results of this study show that there is no optimum concentration of NH4Cl found. The effects of calcination temperature on Kaolin’s morphology is starting to be significantly noticeable at calcination temperature of ≥600°C.

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
A`Isyah Fadhillah
"Co-pirolisis termal antara bonggol jagung dan PP pada laju pemanasan rendah telah berhasil memisahkan bio-oil fasa oksigenat dan non-oksigenat secara spontan. Pada co-pirolisis, PP dapat mengambil oksigen dari bio-oil untuk mengkonversi sebagian bio-oil menjadi fasa non-oksigenat sehingga dapat berkontribusi dalam perengkahan PP. Namun, kemampuan PP untuk mengubah oksigen sangat lemah. Pada penelitian ini, zeolit digunakan sebagai katalis pada co-pirolisis bonggol jagung dan PP pada laju pemanasan rendah guna mengurangi energy aktivasi dari pirolisis PP, sehingga akan mengurangi suhu dekomposisi massa PP hingga kurang dari 400 oC. pada penelitian sebelumnya, belum pernah ada katalitik pirolisis menggunakan laju pemanasan rendah untuk meningkatkan yield fase non-oksigenat pada co-pirolisis biomass dan PP. Penelitian ini dilakukan di reaktor berpengaduk dengan laju pemanasan 5 oC/menit dan suhu pirolisis 500 oC. komposisi umpan yang digunakan adalah 0; 50 dan 100%PP. Katalis yang digunakan adalah katalis zeolit alam dan zeolit sintetik ZSM-5 dengan dua rasio Si/Al yang berbeda yaitu 38 dan 70. Penggunaan katalis menghasilkan produk senyawa alifatik seperti metil, metilen dan methin yang tingggi. Dengan penambahan tipe katalis zeolit ZSM-5 produksi dari alilik yang merupaan rantai yang berhubungan dengan alkena berkurang. Apabila dilhat dari kualitas bio-oil, sebagian besar fraksi bio-oil non-polar memiliki nilai HHV yang hampir sama atau sedikit lebih tinggi dari bahan bakar komersial yaitu diesel dan gasoline. Selain itu apabila dilihat dari nilai BI (Branching Index) bio-oil fraksi non-polar menghasilkan rantai karbon lurus dengan cabang yang lebih banyak apabila dibandingkan dengan bahan bakar komersial. Dari perbandingan HHV dan BI, nilai HHV dan BI bio-oil fraksi non-polar lebih mendekati nilai HHV dan BI dari gasoline komersial.

Thermal co-pyrolysis of corn cobs and polypropylene (PP) at low heating rate has succeeded in separating bio-oil produced between oxygenated and non-oxygenated phases spontaneously. In co-pyrolysis, PP can sequester oxygen from bio-oil to convert part of bio-oil to non-oxygenated phase and can contribute partly non-oxygenated phase by PP carbon chain cracking. However, the capability of PP pyrolates to sequester oxygen is still low. In present work, zeolite catalyst was introduced in co-pyrolysis of corn cobs and PP at low heating rate, in order to reduce activation energy of PP pyrolysis and therefore reducing the lowest temperature of PP mass decomposition to less than 400oC. There has been no research previously conducted to employ catalytic co-pyrolysis at low heating rate to improve non-oxygenated phase yield in co-pyrolysis of biomass-plastic. The present co-pyrolysis work was carried out in a stirred tank reactor at heating rate of 5oC/min and maximum temperature of 500oC. The composition of feed was varied at 0, 50 and 100%PP in the mixture of corn cob particles and PP granules. There were two types of zeolite catalysts used in this experiment, natural zeolite and ZSM-5 with two different ratio, 38 and 70. Utilization of catalyst generated high amount of aliphatic moieties, i.e. methyl, methine and methylene. With ZSM-5 catalyst utilization, production of allyl decreased. Most of non-polar bio-oil fractions have similar or slightly higher higher heating values (HHVs) compared to those of commercial fuels. Branching index (BI) values of non-polar phase of bio-oil generated traight carbon chain with higher branches compared to those commercial fuels. From the comparison of HHV and BI value, non-polar phase of bio-oil generate HHV and BI value closer to commercial gasoline."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>