Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 191169 dokumen yang sesuai dengan query
cover
M. Zainal Abidin
Depok: Fakultas Teknik Universitas Indonesia, 2000
S41613
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akbar Chaiti
Depok: Fakultas Teknik Universitas Indonesia, 2003
S41302
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sinaga, Simon
"Prediksi dan konfro/ rerfzadap perubahan mikrosfrukrur dafam baja sclama proses canai 'panas dengan menggunakan sebuah model empiris i .. r persumaun maremurik, i6/0/I banyalc dikembangkfiln seiring dengan adanya usaha buik unruk meninglcatkun lmalftas baja produk cunai panas (hor-rolled steel producy maupun unruk mengembanglcan sebuuh produk bam.
Peneliticm ini gl'/(UH re(/bkus puda pengaruh lemperarw' d({]rO!'I)1(!Sf .ferhadap lrineliku relcris/alisasi dan pertumbuhan bulir austenir dalam baja C-A/hz hm-il cunai panus. Peneliiian ini melipuli penenluan waktu untuk rerbenru/mya 50% dun 95% _hu/:si rekrislalisusi, menenrulran diameter relrrisralisasi dengan menggunakan mode! empiris Sellar e! af", Serra memodffikasi mode! empiris dm, = A dime" exp sebagai fungsi dari remperarur dcgfurmasi. yairu dengan mcncari nilai konstunru A dan QW
Hasf/ pene/Irfan menunjukkan bahwa pada remperazur deformasi yang lebih ringgi. wuklu unmk le/?ben/uknya 50% dun 95% _liuksi rekrisrulisasf ukun lebih cepar dibandingkan pada remperarur rendah. Demilcian halnya dengun diwncier rekrismiisusi yang semulcin besar seiring dengan meningkatnya tempemrur deformasi"
Depok: Fakultas Teknik Universitas Indonesia, 2003
S41273
UI - Skripsi Membership  Universitas Indonesia Library
cover
Primanila Serny
"ABSTRAK
Baja karbon rendah adalah baja dengan elemen pembentuk uramanya Fe
dan C di mana kandungan karbonnya tidak melebihi 0,05%. Karena Hu baja
jenis ini memiliki keuletan yang tinggi. Pada aplikasinya baja karbon rendah
banyak digunakan pada proses deep drawing untuk pembentukkan badan mobil.
Salah satu masalah yang timbul adalah kekuaran mekanisnya kurang. Salah
satu cara unruk meningkatkan kekuaran seperri yang diinginkan dcngan
mendaparkan siruktur butir-butir ferit yang berukuran kecil melalui metode
Thermo Mechanical Control Process (TMCP).
Penelitian yang dilakukan yaitu proses canai panas baja karbon rendah
pada temperatur austenit dengan menggunakan parameter perubahan deformasi
(regangan) dan Iaju pendinginan. Pada penelitian ini diamati transformasi butir
ausrenit menjadi butir ferit setelah proses canai panas dan hubungannya dengan
fungsi regangan deformasi dan laju pendinginan.
Benda uji yang dipakai berukuran 3.5 x 50 x 100 mm, dipanaskan sampai
temperatur ± 1100°c dan dicanai pada temperatur ausrentsast 95 0-1000°C.
Deformasi yang diberikan sebesar 0, 2; 0,3 dan 0.4 dan didinginan melalui media
pendinginan air, oli juga di udara terbuka Setelah proses canai dilakukan analisa
metalografi dengan menggunakan mikroskop optik dan metode planimetri untuk
perhitungan ukuran butir austenit prior dan ferit.
Kesimpulan yang didapat yaitu Iaju pendinginan yang cepat dan deformasi
yang besar akan menghambat pertumbuhan butir ferit sehingga ukuran butir ferit
Iebih kecil daripada pendinginan yang lambat dan deformasi yang kecil."
2000
S41626
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ricky Mossadik Kiprianov
Depok: Fakultas Teknik Universitas Indonesia, 2002
S41430
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wafdi Fitri
"Perkembangan dunia industri yang sangat cepat membutuhkan kemampuan peralatan yang tinggi. Kemampuan peralatan sangat dipengaruhi oleh desain, kondisi operasi dan pemilihan material. Pada Nickel base superalloy, paduan memberikan pengaruh dalam mengontral ukuran butir austenit dan memberikan kekuatan temperatur tinggi dengan membentuk endapan pada butir dan butir yang mempengaruhi migrasi batas butir dalam pertumbuhan butir selama pemanasan. Penelitian rentang pengaruh temperatur terhadap pertumbuhan butir austenit dilakukan dengan agar berguna untuk mendapatkan butir yang seragam. Untuk mendapatkan butir yang seragam bergantung pada siklus pemanasan yang dilakukan terhadap material nickel base superalloy. Pemanasan ini akan memberikan pengaruh pada kelarutan endapan yang berpresipitasi pada matrik. Pertumbuhan butir austenit nickel base superalloy KHR45A selama pemanasan pada temperatur 800°C, 900°C dan 1000°C dengan waktu tahan yang sama yaitu 2 jam memperlihatkan peningkatan diameter butir austenit. Butir tumbuh dari 97,12 μm menjadi 121,21 μm. Unsur paduan memberikan pengaruh pada struktur mikro nickel base superalioy KHR45A. Endapan ini berpengaruh pada pertumbuhan batas butir austenit. Peningkatan temperatur pemanasan nickel base superalioy KHR45A menghasilkan penurunan nilai kekerasan dari 161 kg/mm² menjadi 153 kg/mm². Hai ini dikarenakan larutnya endapan dengan peningkatan temperatur. Energi aidivasi (Qgg) penelitian sebesar 387.500 J/mol, dengan nilai n sebesar 39 dan nilai konstanta A sebesar 2,0125 x 10pangkat 93. Dengan menggunakan nilai diatas tersebut didapatkan simulasi pertumbuhan butir yang mendekati hasil penelitian."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S41374
UI - Skripsi Membership  Universitas Indonesia Library
cover
Simbolon, Fery
Depok: Fakultas Teknik Universitas Indonesia, 2001
S41504
UI - Skripsi Membership  Universitas Indonesia Library
cover
Myrna Ariati Mochtar
"Berbagai penelitian dari para peneliti terdahulii terhadap pertumbuhan butir baja terfokus pada kondisi isothermal, seliingga berbagai tinjauan terhadap topik ini terdapat dalam berbagai literatur. Sedangkan berbagai aplikasi proses material , seperti canai panas, pengecoran atau tempa berlangsung dalam kondisi non-isotermal. Prediksi pertumbuhan butir mempergunakan persamaan yang didapat secara empiris dalam kondisi anil isothermal, seliingga terjadi fluktuasi dalam besar butir dan sifat mekanis produk baja. Penelitian ini dilakukan untuk mengevaluasi persamaan yang ada dan mendapatkan pertumbuhan butir austenit dalam kondisi non-isotermal. Tiga komposisi baja HSLA-Nb, dengan 0,019, 0,037 dan 0,056% berat Nb diamati pertumbuhan butirnya setelah dilakukan deformasi canai satu pass, dalam kondisi pendinginan kontinyu. Pendekatan yang digunakan adalah memberikan regangan deformasi canai panas antara 0,3-0,4, dengan temperatur pemanasan awal 1200®C, dan temperatur deformasi antara 900- I100°C, dengan kecepatan pendinginan antara 7-l2"C/detik dalam rentang waktu rata-rata 30 detik setelah deformasi, kemudian didinginkan cepat ke temperatur ruang. Kecepatan pendinginan direkayasa dengan memasukkan benda uji ke dalam heating jacket dan pendinginan cepat dilakukan dengan water jetspray. Hasil eksperimen menunjukkan bahwa pertumbuhan butir austenit baja setelah proses canai panas dapat digambarkan sebagai fungsi kecepatan pendinginan. Besar butir austenit semakin menurun dengan meningkatnya kecepatan pendinginan. Kinetika pertumbuhan butir austenit non-isotermal didapat dengan melakukan modifikasi matematis persamaan pertumbuhaii butir isotermal dengan memasukkan faktor inverse kecepatan pendinginan berpangkat m. Model modifikasi ini diiakukan iterasi dengan hasil eksperimen , dan didapat model empiris dengan nilai amat mendekati hasil eksperimen, dengan hubungan besar butir austenit yang berbanding terbalik dengan kecepatan pendinginan berpangkat m (I/Cr'"), dan penambahan konstanta B. Konstanta kecepatan pendinginan m hampir tidak terpengaruh oleh komposisi baja yaitu sekitar 12, sedangkan konstanta B meningkat dari 3,0 xlO'® sampai 8 x 10'° dengan peningkatan prosentase Nb , C atau N dalam baja. Model ini dievaluasi dengan perhitungan pertumbuhan butir austenit hasil perhitungan matematis berdasarkan persamaan isotermal dan metode additivity. Didapat bahwa model non isothermal empirik hasil modifikasi memiliki nilai besar butir austenit yang amat mendekati perhitungan matematis dengan nilai konstanta yang relatif sama. Didapat bahwa nilai besar butir austenit dari perhitungan dengan persamaan modifikasi empirik yang didapat memiliki nilai deviasi rata-rata terhadap hasil eksperimen yang relatif rendah (4-15%), dibanding deviasi rata-rata hasil perhitungan dengan persamaan isothermal. Dapat disimpulkan bahwa model pertumbuhan butir non-isotermal hasil modifikasi yang didapat, dapat dipergunakan untuk memprediksi besar butir austenit setelah canai panas dengan lebih akurat."
Depok: Fakultas Teknik Universitas Indonesia, 2010
D1002
UI - Disertasi Open  Universitas Indonesia Library
cover
Tia Rahmiati
"Perkembangan reknologi dewasa ini, memburuhkan baja yang memiliki kombinasi anlara kekuaran yang tinggi, kelangguhan, tahan korosi dan yang tidak kalah penring adalah lfemampuan unruk mernpertahankan kekuaran pada remperatur tinggi rerutama unluk aplikasi pada femperatur tinggi seperli Steam Reformer, dan lain sebagainya. Jenis baja yang dapa! dipililz adaiah baja Ni-based superalloy dengan menambahkan zmsur Nike! dan Chromium dalarnjumlah yang signyikan. Biasanya komposisi Nike! 34- 70 % dan Chromium 24-35 %, juga dirambah dengan paduan-paduan lain yang kecil jumlahnya seperri Niobiurn, Mofybdenum, dan siiilcon. Kandungan Nike/ yang besar sangar mempengaruhi sgfat mekanis baja ini terulama untuk mendapal/can sy'at mampu tahan terhadap kenaikan femperarur melahzi pengualan presqviral serta penghalusan butir.
Pada penelitian ini alcan diamari perilaku burir ausrenit saat pemanasan isothermal. Benda zg'i yang digunakan ialah baja Ni-based .superalloy dengan kandungan Nike! sebesar 4 - 46 % dan Chromium 30 -- 35 % yang dipanaskan pada remperalur 900 "C dengan wa/du tahan mufai dari 1, 2, 3, 4, sampai 5 jam. Peningkalan waktu tahan pada baja Ni-based superalloy selama pemanasan isothermar' pada remrnperalur 900 "C akan memperbesar ukuran butir ausrenir. Hal ini di/carenalam pada temperatur tersebur, preszpitat karbida dari paduan-paduannya yang b€lj`ll72g.\`f :mink menghamba! perrumbuhan butir austenit telah larur seluruhnya seingga mendapa!/can pertumbuhan bulir normal /continyu dan seragam. Pcningkatan waldu tahan akan meningkarkan migrasi atom-arom pada batas butir melalui proses dyizsi sehingga butir akan bertambah besar.
Energi aklivasi (Qgg) baja Ni-based superalloy, yang dzjpanaskan pada temperatur 900 “C dengan walftu tahan yang berbeda-beda, yailu I , 2, 3, 4, dan 5 jam adolah 440267 J/mol dengan nilai n = 2,805 dan konsranra A = 1,786 x 102). Nilai Qgg, konstanta n dan A yang sesuai akan memperlihatkan predilcsi model yang mendelcati hasi! pengamalan yang dlakukan."
Depok: Fakultas Teknik Universitas Indonesia, 2003
S41310
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andre Indrayana
Depok: Fakultas Teknik Universitas Indonesia, 1995
S41061
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>