Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 65778 dokumen yang sesuai dengan query
cover
Sigit Dwitanto
"Kinerja suatu generator set dilihat dari kesiapannya untuk mengatasi kekurangan daya pada saat terjadi pemutusan hubungan dari sumber tenaga listrik utama yang terjadi setiap saat. Untuk mengetahui kinerja dari generator set diperlukan suatu pengujian, salah satu metode pengujian adalah dengan membebani generator set dengan beban resistif terpisah. Kondisi generator set akan berubah sesuai dengan jam pakai dan beban yang diaplikasikan. Pengujian dengan kondisi yang berbeda yaitu generator set baru, mencapai 15000 jam operasi dan setelah dilaksanakan overhaul, akan didapat kinerja yang berbeda. Berdasar kinerja setiap kondisi generator set, teknisi dapat menentukan langkah-langkah perawatan selanjutnya untuk mendapatkan kinerja yang optimal.

Performance of a generator set seen from readiness of it to overcome the energy insuffiency when the disconnection from main source of power electrics that happened every time. To know the performance from generator set need a test, one of test method is by loading generator set with the separate resistif load. Generator condition set will change as according to operation hour and load which applicated. Load test with the different condition generator set that is generator set newly, reaching 15000 hour operated and after general overhaul, will be got a different performance. Based on performance of each generator set condition, technician can determine the maintenance stages steps to get the optimal performance."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S40722
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 2005
TA3107
UI - Tugas Akhir  Universitas Indonesia Library
cover
Muhamad Hajar Murdana
"Skripsi ini membahas mengenai suatu percobaan untuk mendapatkan pembagian beban genset yang dioperasikan parallel, ataupun dioperasikan tunggal secara optimal dan tidak melebihi kapasitas daya listrik unit tersebut. Caranya dengan penyetelan governor dan kontrol pembagi beban (LSM) pada setiap penggeraknya. Untuk mengetahui seberapa besar efisiensi dan batas maksimum kapasitas dayanya, dilakukanlah pengujian Technical Analysis Level 2 (TA2) secara individu. Kemudian memparalelkannya dengan sinkronisasi otomatis pada kedua genset dan pengujian pengambilan data pun dilakukan dengan membebani genset secara bertahap hingga batas tertentu.
Hasilnya, didapatkan karakteristik pembagian beban masing-masing genset di setiap tahapan pembebanan dengan perbedaan speed setting governor dan akan dibandingkan pengaturan mana yang paling optimal berdasarkan biaya per kWh dan konsumsi bahan bakarnya. Hal tersebut bisa dijadikan acuan pengoperasian unit pembangkit secara tunggal atau paralel berdasarkan beban sistem tertentu.

The focus of this study is to research to get the optimum of load division that is operated in parallel, or operated in single and don't exceed capacity of electric power unit. Those ways are adjustment for governor and load division / sharing control (LSM) are done each prime mover. To know its efficiency and maximum power capacity limit, is done Technical Analysis Level 2 (TA2) test individually. Then parallel and synchronize them automatically and testing to get the data measurements are done with loading both gensets in stages until certain of load.
The result, got the characteristic of loading division on each genset in every stage of loading with different the speed setting for governor and will be compared which one of the speed setting is most optimum based on cost per kWh and fuel consumption. That matter can to be reference for operation of genset in single or parallel based on load system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51293
UI - Skripsi Open  Universitas Indonesia Library
cover
Fajriawan Sutansa
"ABSTRAK
Di Indonesia, permasalahan sampah menjadi perbincangan dari hulu ke hilir yang terus dicari pemecahannya. Sampah kota di Indonesia memiliki potensi sebagai sumber energi terbarukan yang cukup besar. Namun, belum ada pemanfaatan secara maksimal karena terkendala aspek teknologi dan ekonomi. Teknologi pengolahan sampah menjadi listrik dengan metode landfill gas to power membutuhkan lahan yang besar untuk bisa menampung sisa tumpukan sampah. Dengan latar belakang dan potensi tersebut, pengujian ini bertujuan untuk membandingkan kestabilan tegangan dan frekuensi serita kinerja mesin dari generator set mesin diesel berbahan bakar solar yang dicampur syngas hasil gasifikasi sampah dan dibandingkan dengan solar murni pada skenario pembebanan 6,66%, 13,33%, dan 20%. Pengujian bahan bakar solar dengan campuran syngas mampu mempertahankan kinerja mesin diesel dengan kestabilan tegangan di antara +0,7%-+4,6% dari nilai nominal, kestabilan frekuensi di antara -1,26%-+1,34% dari nilai rata-rata, konsumsi bahan bakar 15,7 m3 syngas setara dengan 1 liter solar, tingkat kebisingan pada jarak 1 meter sebesar 76,28 dB-81,96 dB, dan suhu gas buang di antara 100,42-21,80 derajat celcius.

ABSTRACT
In Indonesia, the problem of waste becomes a conversation from upstream to downstream that the solution is continuously sought. Municipal Solid Waste (MSW) in Indonesia has the potential as a source of renewable energy that is quite large. However, there has not been a maximum utilization due to technological and economic aspects. The technology of processing waste into electricity using the landfill gas to power method requires a large amount of land to be able to accommodate the remaining piles of garbage. As that background and potential, this analysis aims to compare the stability of the voltage and frequency as well as the performance of the engine from diesel engine generator sets which the diesel fuel mixed with syngas from waste gasification results and compared to pure diesel in the loading scenario of 6.66%, 13.33%, and 20%. Testing diesel fuel with syngas mixture is able to maintain the performance of diesel engines with voltage stability between +0.7%-+4,6% of the nominal value, frequency stability between-1.26%+1.34% of the average value, fuel consumption of 15.4 m3 syngas is equivalent to 1 liter of diesel, the noise level at 1 meter is 76.28 dB 81.96 dB, and the temperature of the exhaust gas is between 100.42 121.80 celcius degree."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Azizan Billardi M
"Setiap tahun, Indonesia mengalami peningkatan jumlah pelanggan listrik, tetapi fluktuasi keadaan keandalan jaringan masih terjadi, sehingga dibutuhkan cadangan tenaga listrik berupa genset agar aktivitas dapat berjalan secara optimal. Dengan jumlah penjualan dan penyalur terbanyak, bensin masih menjadi pilihan bahan bakar genset. Pemilihan bahan bakar bensin berdasarkan angka oktan riset pun tidak bisa sembarang mengingat Indonesia telah menerapkan Bahan Bakar Standar Euro 4 dengan angka oktan riset (RON) minimal 90, sehingga untuk menggantikan Premium (RON 88), Pertalite (RON 90) dan Pertamax (RON 92) dapat menjadi pilihan. Dengan latar belakang dan potensi tersebut, pengujian bertujuan untuk mengetahui kestabilan tegangan dan frekuensi serta kinerja mesin genset dengan bahan bakar Pertalite dan Pertamax yang dilakukan dengan skenario pembebanan 25%, 50% 75%, dan 90% dari kapasitas maksimum genset. Pada parameter kestabilan tegangan dan frekuensi, tegangan untuk kedua bahan bakar memiliki jangkauan 211,8-239,8 Volt sehingga masih sesuai standar sedangkan frekuensi untuk bahan bakar Pertalite sesuai standar pada beban 1,5 kW (75%) dan 1,8 kW (90%), sedangkan Pertamax hanya pada beban 1,5 kW (75%). Pada parameter kinerja mesin, konsumsi bahan bakar spesifik Pertalite lebih hemat dengan nilai 0,67-1,34 l/kWh, sedangkan Pertamax 0,87-1,37 l/kWh. Temperatur gas buang Pertamax lebih tinggi dengan nilai mencapai 277,9 oc, sedangkan Pertalite hanya mencapai 266,1 oc. Nilai tingkat kebisingan kedua bahan bakar masih di bawah nilai ambang batas paparan kebisingan, yaitu hanya mencapai 68,6-70 dB.

Every year, Indonesia experiences an increase in the number of electricity customers, but fluctuations in the state of network reliability are still occurring, so electricity reserves are needed in the form of generators so that activities can run optimally. With the highest number of sales and distributors, gasoline is still the choice of generator fuel. The selection of gasoline based on research octane numbers cannot be arbitrary, considering that Indonesia has implemented Euro 4 Standard Fuel with a minimum research octane number (RON) of 90, so as to replace Premium (RON 88), Pertalite (RON 90) and Pertamax (RON 92) can be an option. With this background and potential, the test aimed to determine the quality of the electric power and the performance of the engine generator set with Pertalite and Pertamax fuel which was carried out with a scenario of 25%, 50% 75%, and 90% load of the maximum capacity of the generator set. In the parameters of voltage and frequency stability, the voltage for the two fuels had a range of 211.8-239.8 Volts so that both fuels met the standard while in frequency parameter, Pertalite fuel met the standard at 1.5 kW (75%) and 1.8 kW (90%) loads, while Pertamax fuel only at 1.5 kW (75%) load. In the engine performance parameters, the specific fuel consumption of Pertalite was more efficient with a value of 0.67-1.34 l/kWh, while Pertamax was 0.87-1.37 l/kWh. The exhaust gas temperature of Pertamax was higher with values ​​reaching 277.9 oc, while Pertalite only reached 266.1 oc. The value of the noise level of the both fuels was still below the threshold value of noise exposure, which only reached 68.6-70,1 dB.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Edgar Nagok Nahum
"Kendaraan listrik merupakan sebuah perkembangan teknologi pada bidang otomotif untuk mengatasi permasalahan energi fosil yang semakin menipis di bumi. Energi akibat pengereman konvensional pada kendaraan sebagian besar terbuang menjadi energi panas sehingga diperlukan strategi pengereman yang optimal. Pengereman regeneratif merupakan mekanisme pengembalian energi yang terbuang saat proses pengereman. Pada pengereman regeneratif energi kinetik diubah menjadi energi listrik dengan bantuan generator. Metodologi yang digunakan pada penelitian ini, yaitu melakukan pengujian pengereman regeneratif dengan variasi beban resistif yang dihubungkan pada generator arus searah. Beban yang digunakan sebesar 12 Ω, 18 Ω, 22 Ω, 30 Ω, 38 Ω, 56 Ω, 80 Ω, dan 100 Ω. Perbedaan beban resistif mempengaruhi jumlah energi listrik yang dihasilkan dan waktu yang dibutuhkan untuk melakukan pengereman. Semakin kecil nilai resistansi pada generator maka semakin besar energi yang dihasilkan dan waktu yang dibutuhkan untuk melakukan pengereman semakin cepat.

Electric vehicles are a technological development in the automotive sector to overcome the problem of depleting fossil energy on earth. Most of the energy due to conventional braking on vehicles is wasted into heat energy, so an optimal braking strategy is needed. Regenerative braking is a mechanism to recover energy wasted during the braking process. In regenerative braking, kinetic energy is converted into electrical energy with the help of a direct current generator. The methodology used in this study is to test regenerative braking with variations in resistive loads connected to a generator. The loads used are 12 Ω, 18 Ω, 22 Ω, 30 Ω, 38 Ω, 56 Ω, 80 Ω, and 100 Ω. The difference in resistive load affects the amount of electrical energy generated and the time it takes to brake. The smaller the resistance value on the generator, the greater the energy produced and the time it takes to brake faster."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lunardi Rusli
Depok: Fakultas Teknik Universitas Indonesia, 1995
S36273
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1995
S36437
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ade Luthfi
"Naskah ini bertujuan mengetahui potensi sistem pembangkit listrik tenaga biogas menggunakan genset sebagai sumber energi alternative pada daerah bencana. Indonesia menjadi negara yang berisiko mengalami bencana berdasarkan data World Risk Index pada tahun 2014-2016. Gempa Bumi Palu menunjukan energi listrik menjadi kebutuhan penting saat bencana. Berdasarkan peraturan BNPB No. 17 Tahun 2009, genset diperlukan sebagai unit pembangkit listrik di daerah bencana. Biogas dapat menjadi alternative pembangkit listrik di daerah. Metode penelitian yang digunakan dengan menentukan metode perlakuan biogas yang tepat Variasi bahan bakar dan pembebanan, kapasitas mesin dilakukan untuk mengetahui kinerja genset. Didapatkan hasil produksi biogas akan optimal setelah 10 hari retensi biomassa, 90 menit pemurnian H2O di bag absorbent. Dilakukan pengujian genset 1 kW menggunakan bensin dan biogas dengan beban 200 W, 400 W, dan pengujian genset 3 kW menggunakan gas metana dengan beban 400 W, 750 W ,1000 W, 1500 W. Pada persentase beban yang serupa, SFC secara berurutan dari paling tinggi yaitu gas metana, biogas dan bensin dan efisiensi termal genset 3 kW lebih tinggi dibanding 1 kW. Daya aktif per beban yang dihasilkan genset 1 kW dan genset 3 kW relatif sama.

This paper aims to find out the potential of a biogas power plant system using generator sets as an alternative energy source in disaster areas. Indonesia is a country at risk of experiencing a disaster based on World Risk Index data for 2014-2016. The Palu Earthquake shows that electricity is an important necessity during a disaster. Based on BNPB regulation No. 17 of 2009, generator sets are needed as units of electricity generation in disaster areas. Biogas can be an alternative power plant in the area. The research method used to determine the appropriate biogas treatment method Variation of fuel and loading, engine capacity is carried out to determine the performance of the generator. Obtained biogas production will be optimal after 10 days of biomass retention, 90 minutes of purification of H2O in bag absorbent. The 1 kW generator set was tested using gasoline and biogas with a load of 200 W, 400 W, and testing a 3 kW generator using methane gas with a load of 400 W, 750 W, 1000 W, 1500 W. high, namely methane gas, biogas and gasoline and the thermal efficiency of a 3 kW generator set is higher than 1 kW. Active power per load produced by a 1 kW generator and 3 kW generator is relatifly the same."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>