Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 127036 dokumen yang sesuai dengan query
cover
Umar Tsani Abdurrahman
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38483
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adila Alfa Krisnadhi
"Principal Componen Analysis (PCA) merupakan sebuah metode transformasi yang sangat berguna dalam sistem pengenalan wajah tiga dimensi. PCA berperan sangat baik sebagai alat pengekstraksi ciri yang sangat dibutuhkan dalam proses klasifikasi objek tiga dimensi yang diwakili oleh sekumpulan citra wajah dua dimensi. Dalam proses ekstraksi ciri dilakkan transformasi yang sekaligus melibatkan proses reduksi dimensi untuk mendapatkan ciri-ciri optimal sebagai basis ortogonal ruang wajah. Namun pada setiap himpunan citra wajah yang berbeda proses ini harus dilakukan berulang-ulang karena tingkat reduksi dimensi tersebut ditentukan oleh suatu parameter proporsi kumulatif nilai eigen yang harus ditentukan secara manual dari luar sistem. Akibatnya, proses untuk mendapatkan tingkat reduksi dimensi yang terbaik menjadi terhambat karena adanya proses trial and error tersebut. Disini akan dijelaskan sebuah metode untuk mengotomatisasi dan mengoptimasi proses di atas dengan menunjukkkan kinerja yang tidak kalah bahkan mampu memperbaiki kinerj PCA tanpa dikombinasikan dengan alogritma genetika, sehingga disini proses otomasi dan optimasi yang diharapkan dapat dinyatakan berhasil."
2003
JIKT-3-2-Okt2003-84
Artikel Jurnal  Universitas Indonesia Library
cover
Novi Murniati
"DNA Sequencing by Hybridization (DNA SBH) adalah suatu proses pembentukan barisan nukleotida suatu rantai DNA dari kumpulan fragmen yang disebut spektrum. Spektrum tersebut diperoleh dari proses biokimia yang disebut hibridisasi. DNA SBH dapat dipandang sebagai masalah optimisasi yang dapat diselesaikan dengan menggunakan algoritma genetik. Prinsip kerja algoritma genetik berdasarkan pada teori evolusi Charles Darwin. Pada skripsi ini akan dibahas penerapan kinerja algoritma genetik pada DNA SBH. Terdapat tiga tahapan penting dalam algoritma genetik, yakni proses seleksi, crossover, dan mutasi. Jenis metode yang digunakan pada proses seleksi, crossover, dan mutasi secara berturut-turut adalah metode yang merupakan kombinasi antara roulette wheel dan deterministic, structured crossover, dan swap mutation. Kinerja algoritma genetik akan diuji dengan menggunakan data dari Gen Bank dan masalah DNA SBH yang dibuat secara acak. Selain itu juga akan dilihat pengaruh perubahan nilai probabilitas crossover (c) dan probabilitas mutasi (m) terhadap kinerja algoritma genetik untuk DNA SBH. Berdasarkan hasil percobaan diperoleh bahwa algoritma genetik cukup baik digunakan pada DNA SBH. Selain itu, perubahan nilai probabilitas crossover (c) dan probabilitas mutasi (m) ternyata mempengaruhi kinerja algoritma genetik dalam memperoleh solusi."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S27800
UI - Skripsi Open  Universitas Indonesia Library
cover
Waas, Arisha Octiany
"Generalized Assignment Problem (GAP) adalah masalah penugasan sehimpunan berhingga tugas ke sehimpunan berhingga agen. Setiap tugas mempunyai bobot dan biaya penyelesaian yang mungkin berbeda untuk setiap agen. Setiap agen mempunyai kapasitas sumber daya dan tidak boleh mengerjakan tugas melebihi kapasitasnya. Pada skripsi ini dilihat kinerja dari algoritma genetik dalam menyelesaikan GAP. Algoritma genetik terinspirasi oleh teori evolusi biologi. Operator utama yang digunakan adalah binary tournament selection, one point crossover, dan swap mutation. Untuk meningkatkan kinerja, ditambahkan local improvement steps dan replacement scheme. Kinerja algoritma genetik diukur dari kedekatan solusi yang diperoleh dengan Best Known Solution (BKS) dari masalah penguji yang diambil dari OR Library. Selain itu, juga dilihat pengaruh perubahan nilai probabilitas crossover PC dan probabilitas mutasi Pm terhadap kinerja algoritma genetik. Berdasarkan percobaan, disimpulkan bahwa kinerja algoritma genetik dalam menyelesaikan GAP cukup baik, dengan kesalahan relatif nilai fungsi tujuan solusi terbaik terhadap BKS cukup kecil, yaitu tidak lebih dari 0.03. Dari percobaan mengubah nilai parameter, diperoleh dengan PC = 0.6, nilai Pm yang cukup baik adalah 0.25 ? 0.3. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
S27616
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aneka Sulita
"Jaringan saraf tiruan telah banyak dikembangkan untuk aplikasi pengenalan pola objek 3 dimensi. Salah satu metode pengenalan objek 3 dimensi melalui citra 2 dimensi dari berbagai sudut pandang telah dikembangkan dengan cara memodifikasi arsitektur lapis tersembunyi pada jaringan multi-layer perceptron menjadi bentuk silindris dan menggunakan metode pelatihan propagasi balik yang dikenal dengan Cylindrical Hidden Multi-Layer Perceptron Back Propagation (CHMLP-BP).
Metode ini melibatkan pasangan berarah antara vektor sudut pandang terhadap objek dengan vektor posisi neuron pada lapis tersembunyi yang diabstraksikan ke dalam konstanta yang akan berperan dalam proses pelatihan maupun pengenalan[1]. Kinerja JST CHMLP-BP tersebut masih kurang baik dan diperbaiki dengan menambah neuron pada lapis tersembunyi secara acak sehingga membentuk arsitektur lapis tersembunyi konsentris[2]. Walaupun kinerja meningkat, pertambahan neuron pada lapis tengah secara acak belum membuktikan bahwa struktur jaringan dan kinerja jaringan telah optimal.
Algoritma Genetika adalah sebuah teknik untuk pencarian solusi optimal untuk berbagai macam permasalahan. Penulis menggunakan Algoritma Genetika untuk mencari struktur jaringan dan kinerja jaringan yang telah optimal.
Penggunaan Algoritma Genetika untuk optimasi terhadap JST CHMLP-BP dilakukan terhadap dua hal. Satu, optimasi pada jumlah bobot-bobot koneksi jaringan, dengan membuang koneksi-koneksi yang tidak diperlukan. Dua, optimasi pada jumlah neuron-neuron tersembunyi, dengan membuang neuron-neuron tersembunyi yang tidak diperlukan.
Hasil eksperimen menunjukkan bahwa dengan parameter-parameter yang tepat, Algoritma Genetika dapat mereduksi ukuran jaringan dan meningkatkan kemampuan pengenalan pola. Analisa terhadap parameter-parameter tersebut menunjukkan penggunaan parameter-parameter yang berbeda untuk tiap persoalan optimasi JST."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2000
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Andry Widiasti Pramono
"ABSTRACT
TIn order to optimize gas resources properly, it is necessary to maintain the balancing between the level of domestic demand for gas and the supply itself. However, gas producers have to face the problem since the resources are spread out through all Indonesia's islands while the major consumers are concentrated only in one island, Java island. Due to natural gas resources cannot be stored and gas is provided mostly based on the demand level for it, physical distribution have to be done by inter-island pipeline system to fulfill the demand.
The optimization of transmission is limited to the each day contractual nomination during the year period. These situation leads transmission optimization getting complicated and difficult to handle manually. Transferring gas should be done in accordance to the determination of quality specification to ensure stabilization system.
In this study genetic algorithms will be discussed in order to solve the problem properly. Originally, genetic algorithms theory come from biological genetic evolution theory. Genetic algorithms theory come from biological genetic evolution theory. Genetic algorithms is applied in pipeline system because genetic algorithms can provide optimal global solution relatively abrupt without distracting local solution. This study will only elaborate power optimization in gas compression process. To minimize total horsepower from the compressor in conjunction with the real condition is an objective function.
The application Genetic Algorithms of optimization in gas compression process was implemented. By implementing genetic algorithms in gas pipeline system will.

ABSTRAK
Dalam upaya pemanfaatan gas secara optimal keseimbangan antara penyaluran dengan kebutuhan dalam negeri harus selalu dijaga. Permasalahan yang dihadapi oleh produsen gas adalah sumber yang ada menyebar di seluruh Indonesia sedangkan konsumen gas terbesar terdapat di Pulau Jawa. Penyediaan gas alam tergantung dari permintaan karena tidak dapat ditampung maka untuk memenuhi permintaan secara fisik, distribusi komoditi dilakukan melalui jaringan pipa yang menyeluruh di kepulauan.
Optimasi transmisi menjadi sangat kompleks dan sukar untuk dipecahkan secara manual, karena terbatas pada nominasi kontraktual setiap hari pada sepanjang tahun, penyerahan gas pada kualitas spesifikasi yang ditetapkan dan dalam pengoperasian dan pemeliharaan dengan cara aman, ekonomis dan efisien agar menjamin kestabilan sistem.Untuk memecahkan permasalahan tersebut, dalam studi ini diperkenalkan Algoritma Genetik yang meniru teori evolusi genetika dalam biologi. Algoritma Genetik dapat diaplikasikan pada bidang teknologi. Pada penelitian ini, metode tersebut diaplikasikan dalam sistem perpipaan, karena dapat menemukan solusi global optimal dengan cepat tanpa terganggu solusi lokal. Pada studi ini lingkup permasalahan dibatasi pada optimasi daya yang digunakan pada proses kompresi gas. Sebagai fungsi obyektif adalah meminimumkan total horsepower dari kompresor dengan batasan-batasan sesuai dengan kondisi nyata.
Dalam tesis ini dihitung total horsepower dan prosentase utilisasi kompresor terhadap kompresor yang tersedia. Aplikasi Algoritma Genetik pada optimisasi kompresi dalam sistem transmisi gas dapat meningkatkan kinerja dari total horsepower yang sangat membantu dalam pengambilan keputusan dalam merencanakan.sarana transportasi gas."
Depok: Fakultas Teknik Universitas Indonesia, 1995
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Deviana Nur Indrawati
"Sistem boiler pada pembahasan tesis ini merupakan sistem mutivariabel, yang mempunyai empat variabel keadaan, dua variabel masukan dan dua variabel keluaran. Dengan variabel pengendali adalah tekanan drum (drum pressure) (y1) dan selisih tingkat air/level air didalam drum (drum water level) (y3 ), sedangkan variabel yang dimanipulasi adalah laju aliran bahan bakar (fuel flow rate) ( u1 ) dan laju aliran air pengisi drum (feedwater flow rate) (u3).
Tujuan dari sistem pengendalian boiler adalah untuk mengatur tekanan uap (drum pressure) (y1) disekitar 320 psi dan level air di dalam drum (drum water level) (y3) disekitar 0 inch terhadap perubahan beban uap. Salah satu pengendalian sistem boiler adalah pengendali PI. Pengendali PI ini akan mengendalikan boiler agar boiler mampu memiliki kinerja yang baik karena pengendali PI dapat mempercepat respon sistem menuju setpoint dan dapat menghilangkan offset atau error steady state.
Pada pembahasan tesis ini pengendalian sistem boiler akan melakukan penalaan parameter pengendali PI berbasis algoritma genetika untuk mendapatkan nilai parameter yang optimal.
Hasil yang diperoleh dari penalaan PI berbasis algoritma genetika pada pembahasan tesis ini sudah dapat mencapai kriteria yang diinginkan seperti overshoot, rise time dan settling time. Dan respon keluaran dari pengendali PI yang ditala dengan algoritma genetika ternyata menunjukkan hasil yang lebih baik jika dibandingkan dengan respon keluaran dari pengendali PI yang ditala dengan cara trial error seperti pada acuan [2] dan [3].

Boiler system described in this thesis is multivariable system, which have four state variable, two input and two output variable. Where variable control is drum pressure (y1) and delta drum water level (y3), whereas the manipulated variable is fuel flow rate (u1 ) and feedwater flow rate (u3 ).
The purpose in this boiler control is to make the drum pressure (y1) around 320 psi and drum water level (y3) around 0 inch towards the changes of steam load. One of boiler system control is PI controller. PI controller will control the boiler to make the boiler have a good performance, because PI controller can enforce system response more quicker into the set point and can eliminate offset or error steady state.
In this thesis a boiler system controller will do a tunning parameter on PI controller based on Genetic Algoritms to produce optimal parameter value.
The result from PI tunning based on Genetic Algorithm in this thesis already fulfill the criteria like overshoot, rise time, and settling time. And output respons from PI controller that have been tunning with genetic algoritms shows the better result when compares with output response from PI controller which tunning with trial error method [2] , [3].
"
Depok: Fakultas Teknik Universitas Indonesia, 2007
T25065
UI - Tesis Membership  Universitas Indonesia Library
cover
Danang Wijayanto
"Arti penting penjadwalan perawatan unit pembangkit disebabkan oleh kenyataan bahwa keandalan dan biaya operasi dari sebuah sistem tenaga listrik sangat dipengaruhi oleh hilangnya pasokan daya dari unit pembangkit yang sedang dirawat. Beberapa metode yang biasa digunakan untuk penjadwalan adalah metode pemrograman integer, metode pemrograman dinamis, dan metode heuristik dengan menggunakan sistim pakar. Tesis ini akan membahas penggunaan metode Algoritma Genetik (AG) untuk penjadwalan perawatan unit pembangkit di sistem interkoneksi Jawa-Bali. AG adalah suatu metode optimalisasi yang ampuh dan cocok untuk digunakan dalam persoalan yang kompleks dan berskala besar. Algoritma ini meniru suatu mekanisme seleksi alam pada makhluk hidup yang ditemukan oleh Charles Darwin yaitu "Survival of the fittest", yang menyatakan individu yang kuatlah yang akan bertahan. Dari hasil eksekusi program diperoleh jadwal perawatan yang optimum dengan standar deviasi cadangan day a ± 8. 7 %. (934 ± 82 MW).

The importance of generator unit maintenance scheduling is due to the fact thaf reliability and operating cost of power system utilities are affected by the maintenance outage of generating facilities. Several methods have been used in finding maintenance scheduling, ie. integer programming, dynamic programming, and heuristic using expert system. This thesis will introduce an application of genetic algorithm on generator maintenance scheduling in the Java-Bali interconnected system. Genetic algorithm is a powerful/optimization method that can solve a large scale combinatorial optimization problem. This algorithm imitate a natural individu selection mechanism found by Charles Darwin, ie. "survival of the fittest" in which the strongest individu will survive. Program execution gives an optimum maintenance schedule with standard deviation of reserve capacity :t 8. 7 %. (934 :t 82 MW).
"
Depok: Fakultas Teknik Universitas Indonesia, 1999
T40702
UI - Tesis Membership  Universitas Indonesia Library
cover
Hilma Qonitah
"Pada skripsi ini akan dibahas konsep ride sharing pada taksi, atau disebut juga taxi sharing, yang merupakan salah satu upaya untuk mengatasi masalah kemacetan akibat kurang seimbangnya jumlah kendaraan yang beredar dengan kapasitas jalan yang dapat menampung kendaraan. Pada taxi sharing, penumpang taksi berbagi kendaraan taksi dan biaya perjalanan dengan penumpang lain yang memiliki tempat asal-tujuan yang sama/hampir sama dalam waktu perjalanan yang hampir bersamaan. Pemanfaatan taxi sharing yang mengoptimalkan utilisasi kendaraan taksi, selain dapat mengurangi jumlah kendaraan taksi yang dibutuhkan untuk melayani konsumen dan mengurangi biaya operasional taksi, juga dapat mengurangi penggunaan bahan bakar, yang pada akhirnya mengurangi emisi gas buang kendaraan. Untuk memaksimalkan penggunaan taxi sharing, maka diperlukan pengoptimalan rute taksi dalam melayani penumpang, dimana masalah pencarian rute taxi sharing yang optimal dalam skripsi ini akan dimodelkan dalam bentuk mixed integer programming problem. Permasalahan ini diselesaikan menggunakan algoritma genetika, yang lahir dari sebuah inspirasi teori evolusi Darwin. Algoritma ini digunakan untuk mencari pasangan penumpang yang berbagi layanan taksi dan rute taksi yang optimal. Hasil percobaan dengan menggunakan ukuran populasi (popsize) 10, jumlah generasi 50 dan 100, crossover rate (Cr) 0.7, dan mutation rate (Mr) 0.2 menunjukkan bahwa yang sebelumnya terdapat 8 permintaan taksi dan 8 taksi, operator taksi dapat mengurangi jumlah taksi yang beroperasi sebesar satu taksi. Taksi yang menggunakan konsep taxi sharing, yaitu taksi 5 akan melayani permintaan 2 dan 8, dengan urutan menjemput permintaan 2 lalu 8, lalu mengantarkan permintaan 2 kemudian 8, dengan biaya yang dibayarkan Rp4.200,00 untuk permintaan 2 dan Rp14.700,00 untuk permintaan 8. Maka dari itu, keuntungan operator taksi menjadi lebih besar, penumpang dapat menghemat biaya perjalanan, dan penggunaan kendaraan di jalan berkurang.

This research will discuss about the implementation of taxi ride sharing system or taxi sharing as an attempt to find a solution for traffic jam problem that caused by an unequal number of public transportation units operated in the street and the lack of street capacity which supposed to facilitate it. With the present of taxi sharing system, consument can share their taxi trip with others passengers that going on to same direction at the same time. This solution can give benefit for consuments by sharing the trip cost while at the same time benefitted the public transportations provider to optimalized the utilization of the taxi units and cut off operationalization cost, benefitted society by minimalize the number of cars in the streets and reducing air polution from gasoline consumption. To make this taxi sharing system works it also needed an optimalization in taxi route for each trip service. This research will be trying to solved this challenges by examines the taxi-sharing route services through Mixed Integer Programming Problems. This process will be carried using a genetics algorythm which inspired from Darwin's theory of evolution. This algorithm is aiming to be effectively find and match pairs of passengers who use taxi sharing system and taxi routes. The experiment by using population size (popsize) of 10, number of generations 50 and 100, crossover rate (Cr) 0.7, mutation rate (Mr) 0.2 shows that from 8 taxi units to accomodate 8 taxi requests that have been received before, the taxi provider supposedly be able to effectively reduce the number of taxis into only 7 taxis to carry all of the sharing system passengers that requesting. A taxi that uses taxi sharing system will serve request number 2 and request number 8, by picking up request 2 then 8, then delivering request 2 then 8, with fees paid Rp4.200,00 for request 2 and Rp14.700,00 for request 8. Therefore, the profit of the taxi provider is greater, the passengers can save their trip costs, and the use of vehicles on the road can be decreased."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ervita Indah Pratiwi
"Pengiriman barang dari depot terakhir menuju ke lokasi pelanggan adalah pengiriman last mile. Pengiriman last mile sering dianggap sebagai tahap yang paling mahal dan kurang efisien. Beberapa permasalahan yang dihadapi dalam pengiriman last mile adalah biaya yang tinggi, waktu pengiriman yang lama, dan kemungkinan barang rusak. Penggunaan sistem kendaraan truck-drone dalam pengiriman last mile dapat dijadikan sebagai solusi untuk mengatasi permasalahan dalam last mile. Tujuan dari penelitian ini adalah menemukan rute pengiriman barang yang meminimalkan biaya pengiriman dengan menggunakan sistem truck-drone dalam last mile. Pendekatan yang diusulkan untuk mencari rute optimal terdiri dari dua fase yaitu fase clustering dan routing. Dalam fase clustering menggunakan mean shift clustering untuk mengelompokkan lokasi pelanggan dan mencari lokasi parkir (pusat cluster). Dalam fase routing menggunakan algoritma genetika untuk menemukan rute optimal. Implementasi pada 90 pelanggan didapatkan penggunaan metode mean shift clustering diikuti oleh algoritma genetika, dapat menghasilkan rute optimal yang meminimalkan total biaya. Hal ini ditunjukkan dari penurunan biaya pada rute mean shift clustering mencapai 3,51% dibandingkan clustering dengan metode intuitif. Selain itu, analisis hasil juga mencerminkan bahwa penerapan mean shift clustering mampu mengurangi total jarak sebesar 27,93 % dan waktu tempuh sebesar 25,83 % delivery.

Last-mile delivery is often considered the most expensive and less efficient stage. Some challenges in last-mile delivery include high costs, long delivery times, and the possibility of damaged goods. The use of a truck-drone system in last-mile delivery can be a solution to address these challenges. The objective of this research is to find delivery routes that minimize delivery costs using a truck-drone system in the last mile. The proposed approach to finding optimal routes consists of two phases: clustering and routing. In the clustering phase, mean shift clustering is used to group customer locations and identify parking locations (cluster centers). In the routing phase, a genetic algorithm is employed to find the optimal routes. The implementation on 90 customers showed that the use of mean shift clustering followed by a genetic algorithm could generate optimal routes that minimize the total cost. This is evident from the cost reduction in mean shift clustering routes by 3,51% compared to the initial clustering solution with intuitif method. Furthermore, the results analysis also reflects that the implementation of Mean Shift Clustering can reduce the total distance by 27.93% and travel time by 25.83%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>