Ditemukan 102555 dokumen yang sesuai dengan query
Fakultas Teknik Universitas Indonesia, 1991
S38172
UI - Skripsi Membership Universitas Indonesia Library
Agus Zainal Arifin
"Klasifikasi citra penginderaan jauh (inderaja) bertujuan untuk menghasilkan peta tematik, dimana tiap warna mewakili sebuah objek, misalkan hutan laut, sungai, sawah dan lain-lain. Makalah ini mempresentasikan disain dan implementasi perangkat lunak untuk mengklasifikasi citra inderaja multispektral. Metode berbasis unsupervised yang diusulkan ini adalah integrasi dari metode feature extraction, hierarchical (hirarki) clustering dan partitional (partisi) clustering. Feature extraction dimaksudkan untuk mendapatkan komponen utama citra multispektral tersebut sekaligus mengeliminir komponen yang redundan, sehingga akan mengurangi kompleksitas komputasi. Histogram komponen utama ini dianalisa untuk lemlah terkonsentrasinya pixel dalam feature space, sehingga proses split dapat menghasilkan cluster dengan cepat.
Beberapa cluster yang sangat mirip akan digabungkan oleh proses merge. Pada tahap akhir proses partisi akan mendeteksi prototype tiap cluster dengan Fuzzy C-Mean (FCM). Uji coba perangkat lunak ini dilakukan pada citra Landsat TM dan GOES-8. Hasilnya diukur berdasarkan homogenitas eksekusi dan nilai label contingency. Tabel ini akan membuktikan keberhasilan klasifikasi terhadap 800 sampel dari Jawa Timur yang sebelumnya telah dikenali. Untuk bahan perbandingan sampel diuji coba dengan algortima ISMC (Improve Split and Merge Classification), yang berdasarkan penelitian sebelumnya telah telah terbukti lebih baik dari pada ISODATA. Secara umum, uji coba menunjukkan keunggulannya dibandingkan ISMC."
2002
JIKT-2-1-Mei2002-49
Artikel Jurnal Universitas Indonesia Library
Jason Albert Natanael
"Kopi telah menjadi komoditas ekspor non migas yang memberikan kontribusi terhadap devisa negara dalam jumlah yang tidak sedikit. Nilai ekspor kopi sendiri pada kancah internasional bergantung kepada 2 faktor utama, yaitu jenis atau varietas biji kopi dan tingkat kelayakan atau kualitas dari biji kopi. Upaya untuk mengklasifikasikan kedua faktor tersebut masih cenderung dilakukan secara manual oleh para petani kopi. Atas pertimbangan inilah, penulis hendak menggunakan metode lain, yakni penggunaan model CNN (Convolutional Neural Network) dengan basis masukan berupa citra normal (spektrum RGB) dan citra multispektral (spektrum OCN). Selain itu, penulis juga hendak membandingkan performa dari 2 arsitektur model CNN yang berbeda, yakni ResNet18 terhadap SqueezeNet. Input dari kedua arsitektur ini berupa kombinasi dari citra normal, citra multispektral, atau citra yang telah diregistrasikan (1 citra dengan 6 channel berbeda). Hasil akurasi tertinggi dicapai oleh arsitektur ResNet18 dengan input citra normal (RGB) yang memberikan akurasi sebesar 89% untuk klasifikasi varietas biji kopi hijau, serta 97% untuk klasifikasi tingkatan kualitas biji kopi. Meski demikian, arsitektur ini mampu untuk melakukan klasifikasi multi-output secara bersamaan walaupun terdapat sedikit pengurangan pada tingkat akurasi yang didapatkan.
Coffee has become one of the non-oil and gas export commodity, providing numerous amount of Indonesia’s foreign income. Within the international market, the export value of coffee beans rely on 2 aspects, its variety and its quality. The attempts to classify coffee beans are done manually by the farmers. Therefore, the writer attempts to design a new method, using convolutional neural networks with normal (RGB spectrum image) and multispectral images (OCN spectrum image) as its inputs. The writer also wishes to analyze and compare 2 different CNN architectures performance in this case; ResNet18 towards SqueezeNet. Considering the combination of the inputs; normal images, multispectral images, or the registered images (images with 6 different channels). The highest accuracy acquired from the ResNet18 CNN model architecture using normal images (RGB) is as following: 86% for green coffee beans varieties classification, and 96% for green coffee beans. These architectures are also capable of performing multi-class output classification despite the trade-off in accuracy gained."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Artikel Jurnal Universitas Indonesia Library
Ahmad Arsy
"Indonesia memproduksi lebih dari 700 ribu ton biji kopi, menjadikannya negara keempat terbesar penghasil kopi di dunia. Di dalam biji kopi sendiri, terkandung berbagai zat kimia yang bermanfaat bagi kesehatan seperti kafein, chlorogenic acid (CA), dan trigonelline. Kadar masing-masing zat kimia ini bergantung pada varietas biji kopi serta tingkat penyangraiannya. Sebuah metode terbaru untuk meninjau sifat dari suatu biji kopi secara efisien dan non-destruktif adalah menggunakan Convolutional Neural Network (CNN), yaitu metode pembelajaran mesin (Machine learning) yang meninjau citra dari target yang diberikan. Jenis citra yang diberikan pada suatu model CNN dapat berupa citra multispektral yang terdiri dari banyak panjang gelombang. Citra semacam ini memiliki lebih banyak informasi karena jumlah pita gelombang yang lebih banyak, serta terdapat panjang gelombang yang tidak kasat mata. Penelitian ini bertujuan untuk merancang dan membangun sistem klasifikasi varietas dan tingkat penyangraian biji kopi berbasis citra multispektral dengan menggunakan pemodelan Convolutional Neural Network dengan input citra multispektral dan output majemuk. Citra multispektral yang dipakai menggunakan terdiri atas citra RGB (Red, Green, Blue), dan OCN (Orange, Cyan, NIR). Hasil akurasi pengujian tertinggi dicapai menggunakan arsitektur SqueezeNet, input citra RGB sajam dengan akurasi 95,49% untuk klasifikasi varietas, dan 99,02% untuk tingkat penyangraian. Melalui penelitian ini, perancangan sistem multi output berbasis citra multispektral mampu mengklasifikasikan tingkat penyangraian dan varietas secara bersamaan.
Indonesia produces more than 700 thousand tons of coffee beans, making it the fourth largest coffee producing country in the world. Coffee beans themselves contain various chemicals that are beneficial for health, such as caffeine, chlorogenic acid (CA), and trigonelline. The levels of each of these chemicals depend on the coffee bean variety and the level of roasting. A new method for reviewing the properties of a coffee bean efficiently and non-destructively is using a Convolutional Neural Network (CNN), which is a machine learning method that reviews the image of a given target. The type of image given to a CNN model can be a multispectral image consisting of many wavelengths. This kind of image has more information because there are more wave bands, and there are wavelengths that are not visible to the eye. This research aims to design and build a classification system of varieties and roasting levels of multispectral image-based coffee beans using Convolutional Neural Network modeling with multispectral image input and compound output. The multispectral images used consist of RGB (Red, Green, Blue), and OCN (Orange, Cyan, NIR) images. The highest test accuracy results were achieved using SqueezeNet architecture, input RGB sharp image with 95.49% accuracy for variety classification, and 99.02% for roasting rate. Through this research, the design of a multispectral image-based multi-output system is able to classify roasting level and variety simultaneously."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Fakultas Teknik Universitas Indonesia, 1991
S38017
UI - Skripsi Membership Universitas Indonesia Library
Fakultas Teknik Universitas Indonesia, 1995
S38545
UI - Skripsi Membership Universitas Indonesia Library
Donna Monica
"
ABSTRAKKeberadaan awan pada citra satelit optis dapat mengganggu proses pengolahan dan analisis interpretasi citra, terutama bagi Indonesia yang merupakan negara tropis yang sering tertutup awan sepanjang tahun. Oieh karena itu, perlu dilakukan klasifikasi awan sebelum pengolahan citra lebih lanjut. Artikel ini menawarkan metode lain untuk mengklasifikasi awan, yaitu Genetic algorithm initializing K--means (GAIK). GAIK merupakan metode pengelompokan data yang mengombinasikan metode K-means dengan algoritma genetika, dimana centroid-centroid yang digunakan pada metode K-means diperoleh dari hasil optimisasi algoritma genetika. Hash eksperimen pada citra Landsat-8 menunjukkan bahwa GAIK dapat digunakan untuk mengklasifikasi awan dengan hasil yang cukup baik."
Jakarta: Bidang Diseminasi Pusat Teknologi dan Data Penginderaan Jauh LAPAN, 2018
520 IND 9:11 (2018)
Artikel Jurnal Universitas Indonesia Library
Fakultas Teknik Universitas Indonesia, 1991
S37985
UI - Skripsi Membership Universitas Indonesia Library
Dadan Hardianto
"Kanker payudara merupakan penyakit yang banyak mengancam jiwa kaum wanita. Pengurangan resiko kematian akibat penyakit ini dapat dilakukan dengan pemeriksaan dini melalui mammografi. Hasil mammografi yang berupa mammogram sering kurang memuaskan para ahli radiologi karena tertutupnya sel kanker oleh jaringan/strukur yang sebenarnya merupakan jaringan/struktur normal.
Penelitian ini mecoba memodifikasi metode-metode dari penelitian terdahulu yang berkaitan dengan deteksi kanker secara otomatis atau semi otomatis. Metode terdiri dari preprocessing untuk penghilangan jaringan/struktur normal pada mammogram, segmentasi dengan transformasi watershed dan segmentasi dengan thresholding.
Hasil segmentasi kemudian diklasifikasi menggunakan metode pengukuran jarak kemiripan Euclidean Distance. Hasil uji coba menunjukkan metode preprocesing belum baik sehingga dapat mengganggu proses berikutnya yaitu segmentasi. Segmentasi dengan transformasi watershed mencapai keberhasilan hingga 96,67%, tercatat pada beberapa kasus ukuran sel kanker yang tersegmentasi lebih kecil dari seharusnya. Hasil segmentasi dengan thresholding menunjukkan keberhasilan hingga 70%, tercatat pada beberapa kasus ukuran sel kanker yang tersegmentasi lebih besar dari seharusnya. Metode klasifikasi menunjukkan hasil buruk dengan selalu menunjukkan kelas benign pada kasus dimana terdapat segmentasi."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2006
T-Pdf
UI - Tesis Membership Universitas Indonesia Library