Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 88538 dokumen yang sesuai dengan query
cover
Norman Indradi Wirahardja
"LSI (Latent Semantic Indexing) adalah suatu metode yang digunakan dalam information retrieval. Menurut penelitian, LSI ini merupakan metode yang paling baik dalam mencari informasi seperti teks. Akan tetapi LSI kurang baik dalam melakukan pengelompokan dokumen. Dokumen-dokumen yang akan diproses harus dikelompokan terlebih dahulu supaya proses LSI lebih efektif. Pada skripsi ini dianalisis sebuah metode baru dalam melakukan information retrieval, yaitu Local Weighted Relevancy LSI. (LWR-LSI). Metode ini menambahkan proses pembobotan (weighting) pada metode lokal LSI. Jadi, setelah dikelompokkan, dokumen-dokumen yang relevan akan dibobotkan. Pembobotan yang dilakukan terhadap dokumen pun bermacam-macam. Dengan adanya pembobotan ini, dokumen dapat diurutkan sesuai dengan tingkat relevansi dokumen tersebut dengan kata kunci pada query. Semakin relevan, maka ranking dokumen tersebut semakin tinggi. Aplikasi information retrieval yang dibuat ini merupakan aplikasi web-based dengan menggunakan bahasa pemrograman PHP. Kemudian, kinerja dari metode LWR-LSI pada aplikasi ini pun akan dianalisa. Analisis kinerja ini dilakukan berdasarkan waktu yang diperlukan untuk menyelesaikan proses information retrieval pada saat diletakkan dalam sistem localhost dan website di internet. Beragamnya data yang diperoleh disebabkan oleh beberapa faktor, antara lain faktor query yang dimasukkan oleh user, faktor digunakan atau tidaknya klasifikasi, faktor batas relevansi dari dokumen yang ingin ditampilkan, dan faktor pembobotan yang digunakan. Berdasarkan analisa yang dilakukan dapat disimpulkan bahwa metode LWRLSI ini lebih baik dari metode LSI biasa dalam aplikasi information retrieval. Kesimpulan tersebut diambil berdasarkan waktu yang dibutuhkan untuk menyelesaikan seluruh proses dan ketepatan yang dihasilkan. Metode LWR-LSI dapat mengurangi waktu yang diperlukan untuk menyelesaikan proses sampai 1,721% dari metode LSI biasa.

LSI (Latent Semantic Indexing) is known as one of the method that used in an information retrieval. According to the research, LSI is the best method for retrieving information like documents. But, LSI is not good enough to classify the documents. Before those documents are being processed, they have to be classified first. So, in this paper, the author use the new method, known as Local Weighted Relevancy LSI (LWR-LSI) for retrieving information. This method add a weighting process in the local LSI. So, after being classified, the relevant documents will be weighted. The process is using diffrent formulas. The result, the documents can be ranked with the relevancy to the user query. More relevant the document, higher the rank it will get. The information retrieval aplication is an web-based aplication with PHP script. Then the performance of the method in this aplication will be analized. Analizing the performance is based on the time that needed to finish the whole process in the localhost system and the internet network (website). The various ricieved data is caused by some factors, like user query factor, classification factor, relevancy limit factor, and weighting factor. After analizing the data, can be concluded that the LWR-LSI method in the information retrieval aplication is better than the former LSI method. This conclusion is based on the speed of the process and the accuracy of the result. The new method can decrease 1,721% the needed time if it is compared to the old method."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S40371
UI - Skripsi Membership  Universitas Indonesia Library
cover
Laskito Harmantyo
"Aplikasi information retrieval dalam wujud mesin pencari atau search engine sudah dikenal luas oleh pengguna internet. Informasi bisa didapatkan dengan melakukan pencocokan istilah dalam dokumen dengan istilah yang ingin dicari. Kata yang dimasukkan dalam query dicari kehadirannya dalam sejumlah dokumen. Pencocokan ini merupakan pencocokan secara harfiah atau yang dikenal dengan lexical matching. Metode pencocokan secara harfiah ini dapat memberikan hasil yang kurang akurat karena pencocokan harfiah hanya melihat kesamaan bentuk kata atau istilah saja tanpa melihat makna dan korelasi istilah tersebut. Latent Semantic Indexing (LSI) mengatasi masalah tersebut dengan menggunakan pendaftaran dan penyusunan istilah secara statistik. Struktur laten dituangkan dan digambarkan secara matematis dalam elemen-elemen matriks yang terukur. Teknik Singular Value Decomposition (SVD) digunakan untuk melakukan estimasi struktur penggunaan kata dalam dokumen-dokumen. SVD juga dipakai untuk meminimalisasi perhitungan dan meningkatkan performa information retrieval. Pembobotan pada dokumen dan query ditambahkan untuk meningkatkan performa relevansi perolehan dokumen. Implementasi LSI dengan SVD dilakukan secara web-based, dengan koleksi dokumen berupa judul dan abstrak dari sejumlah skripsi mahasiswa teknik elektro. Hasil ujicoba memberikan kesimpulan bahwa dari seluruh rangkaian proses perolehan informasi, 95% waktunya dihabiskan untuk kalkulasi SVD. Selain itu, pemakaian fitur klasifikasi dapat mempercepat proses sampai 64 kali waktu tanpa klasifikasi. Berbagai metode pembobotan juga terbukti memberikan hasil perolehan dokumen yang berbeda pada query yang sama, dengan tingkat relevansi yang berbeda. Berdasarkan perhitungan Non Interpolated Average Precision, skema pembobotan frekuensi kata untuk dokumen dan query merupakan skema yang paling baik dalam hal presisi.

Information retrieval in form like search engine has already known by a lot of internet users. Information can be obtained by doing terms matching. Terms in documents are matched dan compared by terms given by users in query. Such method like this known as lexical matching. This method can give inaccurate results because the mechanism is only matching and seeing the similarities of words without giving any concern of meaning or relevancy. Latent Semantic Indexing (LSI) try to compensate this problem by doing indexing and arranging terms in statistical manner. Latent structures are developed in mathematical way as values in matrices elements. Singular Value Decomposition (SVD) is used to estimating the structure of words in documents. In addition, SVD minimalize the matrices calculation and improves the performance of information retrieval application. Weighting scheme to documents and query added to improves the performance of relevancy retrieval. LSI with SVD implemented in web based way, with title and abstract from student of electrical engineering papers as document corpus. The experiment gives a fact that from all LSI process time, for about 95% is spent for SVD calculation. Classification feature of this application gives an acceleration up to 64 times of common process time (without classification). The number of user agent accessing the application gives a slow effect of processing time in linear manner. The great number of user, the longer process time. Various kind of weighting scheme makes a different documents retrieval result at the same queries. Calculation of Non-Interpolated Average Precision stated that word frequency weighting scheme for both document and query is the best in precision performance."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S40368
UI - Skripsi Membership  Universitas Indonesia Library
cover
Suharto Anggono
"Sistem text retrieval (perolehan kembali teks) menanggapi query terhadap koleksi dokumen teks. Dua teknik yang telah diperkenalkan yang dapat digunakan pada text retrieval dan melibatkan penggunaan singular value decomposition (SVD, dekomposisi nilai singular) adalah variable Latent Semantic Indexing (VLSI) serta Latent Semantic Indexing (LSI), pendahulunya. Dokumen dapat dideskripsikan oleh kumpulan term, misalnya berupa kata. Dari dokumendokumen yang ada, dapat dibentuk matriks term-dokumen, A, yang berisi bobot term berdasarkan kemunculannya dalam dokumen. Pada VLSI, sebagaimana LSI, digunakan aproksimasi rank-rendah terhadap A untuk dicocokkan dengan vektor query. Namun, berbeda dengan LSI, aproksimasi pada VLSI tergantung pada distribusi probabilitas vektor query. Distribusi itu dicirikan oleh matriks cooccurrence, CQ. Aproksimasi untuk A itu bisa didapatkan melalui SVD terhadap CQ 1/2A. Telah dilakukan penelitian terhadap VLSI dengan mempelajari literatur, mengerjakan secara manual prosedur VLSI, dan melakukan percobaan penggunaan VLSI. Percobaan dilakukan dengan koleksi 100 dokumen yang pernah digunakan pada mata kuliah Pemrosesan Teks, koleksi 9 dokumen berupa judul technical memo, koleksi MED, dan koleksi CACM. Dari analisis, ditemukan bahwa yang dikalikan dengan A untuk kemudian di- SVD tidak harus CQ 1/2. Dari percobaan dengan koleksi MED dan koleksi CACM, ditemukan bahwa perolehan dokumen dengan VLSI bisa bagus dalam hal precision pada sedikit dokumen berperingkat teratas."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2007
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Siringoringo, Reinhard Panuturi
"Kebutuhan akan pengujian dengan sistem esai semakin meningkat karena memungkinkan pengolahan pendapat dari dua pihak, yang di uji dan penguji. Namun proses pemeriksaan esai merupakan satu proses yang banyak menyita dana, tenaga, dan waktu. Karena itu, diperlukan sistem otomatis yang dapat memberikan penilaian esai.
Simple-O merupakan sistem penilaian esai otomatis yang dikembangkan di Departemen Teknik Elektro Universitas Indonesia. Tujuan dikembangkannya sistem ini adalah untuk membantu dosen dalam melakukan penilaian terhadap ujian yang telah dilakukan oleh mahasiswa.
Sejak dikembangkan pada tahun 2007, Simple-O telah mengalami beberapa perbaikan, baik dari sisi penilaian maupun penyiapan jawaban masukan. Simple-O berbasis Generalized Latent Semantic Analysis (GLSA) dengan menggunakan Hybrid Document Indexing dikembangkan sebagai salah satu perbaikan di sisi penilaian demi meningkatkan korelasi hasil penilaian Simple-O dengan hasil penilaian dosen.
Hasil penelitian penulis menunjukkan hasil terbaik didapat dengan menggunakan kata non-benda dan benda sebagai jawaban referensi dengan concatenate horizontal yang diaplikasikan ke gabungan matriks representasi kata benda dan matriks representasi kata non-benda.

The need for essay based test is increasing because it allows the utilization of both teacher's and student's answer. But the essay examination process is a process that takes up a lot of funds, manpower, and time. Therefore, we need an automatic system that can provide essay examination process.
Simple-O is an Automated Essay Grading (AEG) system developed on Department of Electrical Engineering, University of Indonesia. The purpose of this system development is to assist faculty in assessing the test has been done by the student.
Since its development in 2007, Simple-O has undergone several improvements, both in terms of assessment and preparation of input answers. Simple-O Based On Generalized Latent Semantic Analysis (GLSA) With Hybrid Document Indexing developed as one of the improvements in the assessment in order to enhance the correlation between Simple-O assessment results and faculty assessment results.
The results of the study conducted by the author showed that the best results obtained by using the combination between non-nouns and nouns as reference answer, with horizontal concatenate applied to the combination of nouns representation matrix and non-nouns representation matrix.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S53109
UI - Skripsi Membership  Universitas Indonesia Library
cover
Brian Prama Krisnanda
"Sistem penilaian yang dilakukan oleh penilai manusia untuk menilai jawaban essay dalam jumlah besar dirasakan kurang efisien. Hal ini disebabkan karena penilai manusia memiliki keterbatasan fisik yang tidak dapat dihindari. Jika hanya menggunakan satu orang penilai, memang obyektifitas terjaga, namun waktu pemeriksaan menjadi lama. Jika menggunakan banyak orang penilai, waktu dalam memeriksa menjadi cepat, namun obyektifitas tidak terjaga. Oleh karena itu, untuk meningkatkan efisiensi periu dibuat suatu sistem penilaian yang pemeriksaannya cepat dan obyektifitias tetap terjaga.
Dalam skripsi ini dilakukan perancangan dan implementasi software penilaian essay otomatis dengan menggunakan salah satu metode penilaian essay otomatis yaitu Latent Semantic Analysis (LSA). Metode ini mengonversi kalimat ke dalam bentuk matriks untuk kemudian dilakukan perhitungan. Perhitungan dilakukan dengan menggunakan Singular Value Decomposition (SVD) dimana matriks didekomposisi menjadi tiga komponen matriks, yaitu dua matriks orthogonal dan satu matriks diagonal singular. Kemudian dilakukan reduksi terhadap matriks diagonal singular-nya sehingga menjadi berdimensi dua, dan transpose matriks untuk salah satu matriks orthogonalnya. Setelah itu dilakukan rekonstruksi matriks awal dengan cara mengalikan kembali tiga komponen matriks yang sudah diolah tersebut. Proses penilaian diambil dari perbandingan normalisasi Frobenius antara matriks jawaban dengan matriks referensi yang sudah direkonstruksi.
Pada perancangannya, sistem penilaian essay otomatis ini berupa algoritma yang terbagi menjadi beberapa bagian, diantaranya yaitu program utama, sub program, dan bagian program terperinci diantaranya program konversi jawaban ke matriks, dan program perhitungan SVD. Agar dapat dikembangkan sehingga dapat digunakan melalui jaringan internet, program ini didesain dengan menggunakan aplikasi web. Implementasi dari sistem dilakukan pada sebuah komputer sekaligus merupakan server dan client. Agar sistem dapat berjalan dengan baik, maka diinstal beberapa program diantaranya Apache Server, MySQL Server, PHP, dan Matlab.
Untuk menguji performa dari sistem aplikasi ini dilakukan beberapa pengujian. Pengujian dilakukan dengan tujuan untuk mengetahui bagaimana korelasi antara nilai jawaban mahasiswa yang dihasilkan dengan menggunakan metode LSA, dengan nilai jawaban mahasiswa yang dihasilkan oleh human rater. Dari pengujian didapatkan nilai korelasi antara penilaian otomatis yang menggunakan metode LSA dengan penilaian yang dilakukan oleh human rater ialah sebesar 0,86 - 0,96."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S39970
UI - Skripsi Membership  Universitas Indonesia Library
cover
T.M. Rikza Abdy
"Stemming merupakan salah satu bagian penting dalam proses penilaian esai secara otomatis. Stemming merupakan proses transformasi suatu kata-kata tertentu menjadi kata dasarnya. Salah satu algoritma stemming yang ada adalah dengan menggunakan persamaan kata, dimana semua kata yang berimbuhan dan istilah yang berbeda untuk satu kata bermakna sama dapat disetarakan bobotnya. Untuk itu proses stemming menggunakan persamaan kata ini akan diimplementasikan pada sistem penilai esai otomatis Simple-O berbasis Generalized Latent Semantic Analysis (GLSA) yang bertujuan untuk meningkatkan ketepatan penilaiannya agar semakin mendekati hasil penilaian oleh manusia.
Dari 98 kali pengujian, kinerja GLSA menggunakan proses stemming memberikan hasil yang lebih baik dengan tingkat ketepatan sebanyak 72 kali atau sekitar 73,4% lebih unggul dibandingkan GLSA tanpa proses stemming yang hanya unggul sebanyak 20 kali dari 98 kali percobaan atau dengan presentase sekitar 20,4%. Hal ini menunjukkan bahwa implementasi proses stemming pada Simple-O berbasis GLSA menghasilkan hasil yang lebih baik daripada GLSA tanpa proses stemming.

Stemming is one of the important processes on automatic essay grading. Stemming is a process to transform a word into its root word in order to make essay grader becoming more accurate. One of stemming algorithm that have developed is using word similiarity, where in this algorithm all the prefixed word or the other words that have a similar meaning have an equal weight. This algorithm is implemented on an automatic essay graderbased on Generalized Latent Semantic Analysis (GLSA) called Simple-O in order to match the grade from human raters.
The experiment result shows that from 98 samples GLSA algorithm with the stemming process outperform GLSA without stemming 72 times with the percentage about 73,4%, on the other hand GLSA without stemming only give the better result 20 times with the percentage of 20,4%. This experiments result shows that GLSA based Simple-O using stemming algorithm gives better result than GLSA without stemming process.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47509
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dandun Kusuma Yudha
"Skripsi ini membahas tentang perbandingan dua algoritma untuk sistem penilaian esai otomatis (Simple-O), yaitu generalized latent semantic analysis (GLSA) laplacian eigenmaps embedding (LEM) dan hybrid indexing. Kedua algoritma tersebut dibandingkan untuk mengetahui cara kerja kedua algoritma tersebut, kecepatan proses, dan hasil penilaiannya. Perbandingan cara kerja dilakukan dengan membandingkan pseudocode dari masing-masing algoritma. Kecepatan proses dihitung untuk mengetahui algoritma yang lebih cepat dalam menilai esai.
Algoritma GLSA hybrid indexing merupakan pengembangan dari algoritma LEM. Perbedaan mendasar dari kedua algoritma tersebut adalah pada perlakuan kata benda dan kata-kata selain kata benda. Penelitian ini menggunakan sampel delapan soal yang dikerjakan oleh 48 mahasiswa (384 data). Dari hasil penelitian, GLSA LEM memiliki total waktu proses 46.51454 detik lebih cepat dari GLSA hybrid indexing. Sedangkan rata-rata waktu proses GLSA LEM dan GLSA hybrid indexing untuk menilai satu jawaban adalah 6-6.6 detik. Hasil penilaian dari GLSA LEM dan GLSA hybrid indexing memiliki tingkat kemiripan tertinggi 95,83% dan terendah 16,67%. Dari percobaan sebanyak delapan soal, lima diantaranya memiliki tingkat kemiripan lebih dari 83,33%.

This thesis discusses the comparison between two algorithms which used in automated essay grading system (Simple-O). The two algorithms are generalized latent semantic analysis (GLSA) embedding laplacian eigenmaps (LEM) and hybrid indexing. Both algorithms are compared to determine how the algorithms works, processing time, and the scores. Pseudocode can be used to determine how the algorithms are working, The processing time is calculated to find out which algorithm is faster in assessing essays.
GLSA hybrid indexing algorithm is a development from GLSA LEM. The fundamental difference of the two algorithms is in the treatment of a subset of nouns and words other than nouns. This research using samples of eight questions which filled by 48 students (384 data). From the research, GLSA LEM has a total processing time of 46.51454 seconds faster than GLSA hybrid indexing. While the average processing time GLSA LEM and hybrid GLSA indexing to grade the answer is 6 to 6.6 seconds. GLSA LEM and GLSA hybrid indexing grades have the highest similarity level of 95.83% and 16.67% for the lowest similarity level. From the eight questions, five questions have similarity level more than 83.33%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S53110
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gema Parasti Mindara
"Dewasa ini, banyak sekali ketersediaan data multimedia yang direkam dalam bentuk digital seperti teks, citra, audio dan video serta tersimpan dalam berbagai database. Data multimedia tersebut dapat diakses dengan menggunakan mesin pencari seperti Google, Yahoo, dan Bing. Namun, hasil pencarian dari mesin pencari tersebut belum bisamenghubungkan berbagai media kedalam suatu konsep yang saling terkait. Hal ini menyebabkan hasil penetapan relevansi (relevance judgement) menjadi tidak optimal. Disisi lain, mesin pencari hanya bisa menerima kueri tipe teks atau citra, seperti Google. Oleh karena itu, dibutuhkan suatu mekanisme identifikasi data multimedia secara terpadu (Unified Indexing) dan Query Interface yang bisa menerima berbagai tipe media.
Proses Unified Indexing terdiri dari beberapa tahapan: (1) Membangun testbed; (2) Perancangan Unified Indexing; (3) Implementasi; (4) Ujicoba dan Evaluasi. Perancangan Unified Indexing terdiri dari: Modul Mono Modal Indexing, Modul Conceptdan Modul Search. Modul Mono Modal Indexing melakukan pengindeksan masing-masing tipe media. Sedangkan ModulConceptmelakukanpemberiankonsepkepada data multimedia dengan proses naming. Selanjutnya, Modul Search melakukan pencarian informasi dengan berbagai tipe kueri multimedia (QueryInterface). Ketiga modul tersebut selanjutnya diimplementasikan pada tahapan implementasi. Tahapan ujicoba dan evaluasi dibangun berdasarkan dua skenario, yaitu sistem yang belum menggunakan UnifiedIndexing dan sistem yang telah menggunakan UnifiedIndexing.
Hasil ujicoba memberikan hasil peningkatan perolehan informasi data terambil untuk kueri teks 77%, kueri citra 60%, kueri audio 62% dan kueri video 60%. Sedangkan rata-rata perolehan data relevan untuk kueri teks 81%, kueri citra 85%, kueri audio 84% dan kueri video 85%.

Today, a lot of recorded multimedia data available in digital form such as text, image, audio and video stored in various databases. Multimedia data could be accessed by using search engine such as Google, Yahoo, and Bing. However, the result has not been able to link variety of media into an interrelated concepts. This causes the results of relevance judgement is not optimal. On the other hand, the search enginesuch as Google could only received query type likes text or image. Therefore, we need a mechanism of identifying multimedia data in integrated way (Unified Indexing) and Query Interface that can accept various type of media.
Unified Indexing and Query Interface processes consist of several stages: (1) Establish a testbed as experimental data; (2) Design of Unified Indexing; (3) Implementation; and (4) Test and Evaluation. The design of Unified Indexing comprises of: Mono Modal Indexing Module, Concept Module and Search Module. Mono Modal Indexing Module performs indexing of each type of media. Concept Module conducts giving concept of multimedia data with naming process. Search Module searchs information with various type of multimedia queries (Query Interface). The modules are implemented in the Implementation Stage. Test and evaluation stage built on two scenarios: a system that is not use Unified Indexing and system that use Unified Indexing
The results showed that by using the Unified Indexing, multimedia data residing on the same concept provides a better retrieval results:using query by text improve by average is 77%, by image is 60%, by audio is 62% and by video is 60%. Furthermore, the increase of relevant data using query by text is 81%, by image is 85%, by audio is 84% and by video is 85%.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2013
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Reza Bhaskoro Wibowo
"Dalam suatu ujian, terutama di tingkat universitas, terdapat berbagai macam bentuk soal yang harus dikerjakan oleh mahasiswa. Salah satu bentuk yang banyak digunakan adalah ujian berupa esai. Namun ketika jawaban sudah terkumpul, terdapat kendala yang dihadapi oleh dosen, yaitu melakukan penilaian esai yang banyak memakan waktu dan tenaga. Oleh karena itu, dikembangkanlah suatu sistem untuk membantu pekerjaan dosen tersebut.
Simple O merupakan sistem yang dikembangkan di Departemen Teknik Elektro Universitas Indonesia. Mulai dikembangkan pada tahun 2007, Simple O merupakan suatu sistem yang dapat melakukan penilaian terhadap perkerjaan mahasiswa yang bersifat esai. Tujuan dari diciptakannya sistem ini adalah untuk membantu dosen dalam melakukan penilaian terhadap ujian yang telah dilakukan mahasiswa.
Simple O menggunakan algoritma Latent Semantic Analysis (LSA) ketika pertama kali dikembangkan. Kemudian sistem tersebut dikembangkan hingga menjadi algoritma Generalized Latent Semantic Analysis (GLSA) dan pada akhirnya dikembangkan algoritma Hybrid.

On some tests, especially in university, there are lots of types of questions that must be done by the students. One of them is essay. But when the answers are collected, there is a problem that is faced by the lecturer, the amount of time and energy that need to use by them. Because of that, people developped a system that can help the lecturer.
Simple O is a system that is developped in Electrical Engineering Department, University of Indonesia. The development was started in 2007, and it is a system that can grade the work of the students, in the form of essay. The purpose of the invention of this system is to help the lecturer in giving grades to the tests that have been done by the students.
Simple O uses LSA algorithm when the first time of its development. Then the system has been developped into Generalized Latent Semantic Analysis (GLSA) and finally it becomes Hybrid algorithm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S53112
UI - Skripsi Membership  Universitas Indonesia Library
cover
Benois-Pineau, Jenny
"This book presents the most recent results and important trends in visual information indexing and retrieval. "
New York: Springer, 2012
e20406437
eBooks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>