Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 57655 dokumen yang sesuai dengan query
cover
Siagian, Rudi
"Menggunakan Si1-xGex alloy pada silikon solar cell yang mempunyai energi band-gap (Eg) yang lebih kecil dari silikon, menghasilkan efisiensi yang lebih besar dibandingkan Silikon solar cell. Dan juga meningkatkan kemampuan absorpsi (penyerapan) silikon solar cell, memperluas respons terhadap infrared dan menaikkan current generation. Penggunaan silicon solar cell menggunakan step graded dengan kadar 30% germanium (Si0.7Ge0.3) mempunyai efisiensi yang lebih besar dibandingkan dengan stepgraded dengan kadar germanium yang lain. Dimana silikon solar cell menggunakan lapisan stepgraded Si0.7Ge0.3 ini disimulasikan dengan menggunakan PC1D Version 5.8. Dari beberapa simulasi yang dilakukan yakni simulasi variasi ketebalan lapisan step graded Si0.7Ge0.3 untuk lapisan 2, 3 dan 4, diperoleh efisiensi optimum sebesar 25,426% pada ketebalan masing lapisan sebesar 1nm, 988nm, 11nm dan 1nm, 987nm, 12nm. Dan untuk simulasi variasi ketebalan pada step graded Si0.7Ge0.3, dengan menggunakan 2 fraksi mol, yakni fraksi mol 0.3 (lapisan 2) dan fraksi mol 0.28 (lapisan 3), diperoleh efisiensi optimum sebesar 25,426% untuk ketebalan lapisan sebesar 1nm untuk lapisan 2 (fraksi mol 0.3) dan 999nm untuk lapisan 3 (fraksi mol 0.28) Dalam tulisan ini akan difokuskan pada perhitungan efisiensi dengan memvariasikan energi phononnya (Ep). Dimana phonon ini merupakan partikel ketiga yang terlibat dalam proses penyerapan photon (emisi dan absorpsi phonon) pada indirect-band-gap semikonduktor disamping elektron dan photon itu sendiri. Dari sini akan dilihat pengaruh variasi nilai energi phonon (Ep) terhadap efisiensi silikon solar cell menggunakan lapisan step graded Si0.7Ge0.3 untuk memperoleh efisiensi yang lebih optimal. Dari simulasi yang dilakukan, diperoleh efisiensi silikon solar cell optimum sebesar 27,4706% pada percobaan Ep1 dan Ep2 berubah pada lapisan 2, 3 dan 4 berubah, untuk nilai Ep1 dan Ep2 masing-masing 2 dan 7,1128 meV.

Using Si1-xGex in Silicon-based solar cell, which has lower bangap (Eg) value than Silicon, a cell can achieve higher efficiency compare to a conventional silicon solar cell. Additionally, Si1-xGex alloy layer will improve energy absorption in silicon solar cell, extend its response into infrared region and increase current generation. Performance silicon solar cell using step graded index with 30% content of silicon germanium (Si0,7Ge0,3) have bigger efficiency than using step graded with other germanium content. In this Tesis, silicon solar cell using step graded Si0.7Ge0.3 was simulated using PC1D version 5.8. From simulations that have been done previously such as simulation of variation of the layer thickness of step graded Si0.7Ge0.3 to layer 2, 3 and 4, was got optimum efficiency 25.426% with each layer thickness are 1nm, 988nm, 11nm and 1nm, 987nm, 12nm. And the other simulation is simulation of the layer thickness of step graded Si0.7Ge0.3 with use 2 step graded index germanium content, are 0.3 (layer 2) and 0.28 (layer 3), was got optimum efficiency 25,426%, for both the layer thickness respectively 1nm on layer 2 (index germanium = 0.3) and 999nm on layer 3 (index germanium = 0.28). In this Tesis will focus with calculating of efficiency by varying its phonon energy value (Ep). The phonon constitute the third particle that involving in photon absorption (absorption and emission of phonon) in indirect-band-gap semiconductor beside electron and photon. Then, we investigated influence of phonon changing to performance of silicon solar cell by using step graded Si0.7Ge0.3 and get a higher efficiency. From simulation that have been done, having efficiency optimum of silicon solar cell 27.4206% over experiment of Ep1 and Ep2 change in layer 2, 3 and 4, for phonon energy value of Ep1 and Ep2 are 2 dan 7,1128 meV respectively."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S40692
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nji Raden Poespawati
"ABSTRAK
Sampai saat ini penelitian untuk meningkatkan efisiensi solar cell silikon masih terus dilakukan. Dalam perkembangan penelitian di bidang struktur solar cell juga terus dilakukan, yang terakhir dengan struktur PERL dicapai efisiensi 24,7%. Untuk menghasilkan rancangan struktur solar cell silikon dengan efisiensi di atas 24,7%, maka pada penelitian ini dirancang dan disimulasikan lapisan graded Si1-xGex pada daerah basis solar cell silikon dengan nilai fraksi mol tertentu pada lapisan Si1-xGex.
Landasan perancangan adalah bahwa bahan semikonduktor Si1-xGex ini mempunyai koefisien absorpsi yang besar dan bandgap yang lebih rendah dari silikon pada panjang gelombang > 500 nun, sehingga diharapkan pada daerah deplesi akan terjadi peningkatan carrier generation. Dengan demikian efisiensi dari divaispun akan meningkat. Penggunaan bahan Si1-xGex pada daerah basis ini juga akan meningkatkan arus hubung singkat (short-circuit current) dari solar cell. Peningkatan efisiensi dapat diperlihatkan dengan memperhatikan tiga parameter yang mempengaruhinya, yaitu arcs hubung singkat, tegangan hubung terbuka (open circuit voltage) dan fill factor.
Dari analisa hasil simulasi perancangan dan hasil simulasi implementasi terbukti bahwa kombinasi fraksi mol dan ketebalan lapisan Si1-xGex, yang menghasilkan efisiensi paling tinggi terjadi pada solar cell silikon dengan teknik penumbuhan lapisan Si1-xGex secara bertahap (step graded) sebanyak 3 tahap, yaitu x = 0,3 dan ketebalan lapisan Si1-xGex = 0,0062 gm pada R(2); x sebesar 0,28 dan ketebalan lapisan Si1-xGex = 0,9808 gm pada R(3); sedangkan x = 0,275 dan ketebalan lapisan Si1-xGex = 0,013 gm pada R(4). Fill factor yang dihasilkan adalah lebih besar dari 0,7. Dengan menggunakan kombinasi fraksi mol (x) dan ketebalan lapisan Si1-xGex di atas dapat meningkatkan efisiensi solar cell silikon PSi/nSi1-xGex/n+Si. Semakin banyak tahap penumbuhan lapisan Si1-xGex pada data Pvicell.prm dan data bluepvicell.pnn, semakin balk unjuk kerja solar cell silikon PSi/nSi1-xGex/n+Si pada kedua data tersebut.

ABSTRACT
Nowadays researches for increasing silicon solar cell efficiency still continuously done. Concerning the research development in field of solar cell structure is constantly also made. The last structure is PERL (passivated emitter rear locally diffused) structure, which produces the 24.7% efficiency. For the design of having more than 24.7% efficiency silicon solar cell structure, the graded Si1-xGex layer on base silicon solar cell with certain fraction mole of Si1-xGex layer it designed and simulated at this research.
This Si1-xGex semiconductor material has the absorption coefficient higher than silicon and the band-gap is lower than silicon at wavelength > 500 nm, so it is hoped at the depletion region will occur a generous carrier generation. Thus the device efficiency also increases. Utilization of Si1-xGex material at this base region will also enhance the short-circuit current of the solar cell. Efficiency enhancement can be shown by three parameters, which affects it, namely short-circuit current, open circuit voltage and fill factor.
From the analysis of the design and implementation of the simulation's result, it is shown that combination of fraction mol and thickness of Si1-xGex layer, which produce the highest efficiency at pSilnSi,_5Gejn+Si silicon solar cell is grown by using step graded Si1-xGex layer technique. This technique has 3 steps, they are x = 0.3 and thickness of Si1-xGex layer = 0.0062 p.m at R(2), x = 0.28 and thickness of Si1-xGex layer 0.9808 gm for R(3), while x = 0.275 and thickness of Si1-xGex layer = 0.013 gm at R. The Fill factor, is also higher than 0.7. By using the above combinations of fraction mole (x) and Si1-xGex Iayer thickness, the efficiency of PSi/nSi1-xGex/n+Si silicon solar cell can be increased. The more step of Si1-xGex layer growth in Pvcell.prm and bluepvcell.prm data, the higher performance of PSi/nSi1-xGex/n+Si silicon solar cell can be improved at those both data.
"
Depok: Fakultas Teknik Universitas Indonesia, 2004
D561
UI - Disertasi Membership  Universitas Indonesia Library
cover
Dwinanri Egyna
"Cu In,Ga Se2 CIGS dengan menggunakan substrat Polimida merupakan salah satu material yang memiliki potensi untuk digunakan dalam aplikasi sel surya thin-film. Permasalahan notch pada fabrikasi CIGS dengan substrat Polimida di temperatur rendah menjadi kendala peningkatan karakteristik sel surya CIGS. Pada penilitian ini dilakukan pengembangan sel surya CIGS untuk menghilangkan notch melalui desain single-graded flat-band. Pengaruh variasi dmin pada desain juga diteliti dengan menggunakan simulasi menggunakan perangkat lunak SCAPS. Selain itu ditinjau pula metode fabrikasi alternatif yaitu metode lima-tahap.
Hasil dari fabrikasi dan pengukuran menunjukkan CIGS single-graded flat-band berhasil difabrikasi dengan menggunakan metode lima-tahap dan mengalami peningkatan karakteristik yang signifikan terutama densitas arus Jsc yang mencapai nilai 39,4 mA/m2. Simulasi optimasi menggunakan SCAPS juga menghasilkan nilai dmin optimum yaitu dmin SG = 1,7 m -1,8 m dan dmin flat-band= 0,2 m - 0,3 m.

Cu In,Ga Se2 CIGS grown on Polyimide is one of the potential materials in thin film solar cell application. However, notch problem in low temperature deposition became a hindrance in the characteristics augmentation. In this research, single graded flat band design was developed to eliminate notch structure. The effect of dmin variation in the design was also observed utilizing SCAPS simulation software. A novel fabrication method called five stage method was investigated as an alternative deposition method.
Fabrication and measurement results confirmed five stage method as a suitable deposition procedure for single graded flat band CIGS. The design also improved solar cell characteristics particularly the current density Jsc which reached 39.4 mA m2. The dmin optimum value, which are dmin SG 1.7 1.8 m and dmin flat band 0.2 0.3 m, was determined through the simulation and optimization."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66253
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rudi Junas Saputra
"Masalah lingkungan terbesar saat ini adalah polusi udara. Data Intergovernmental Panel on Climate Change (IPCC) pada laporan United Nation Environment Programme 2021 menunjukan emisi gas CO2 yang semakin membesar, sehingga berpotensi meninkatkan pemanasan global 1,50C hingga 20C dalam dua dekade kedepan. Dye-Sensitized Solar Cell (DSSC) berbasis TiO2, sebagai generasi ketiga dari sel surya terus dikembangkan salah satu solusi energi terbarukan. Penelitian ini ditujukan untuk membuat dan mempelajari perangkat DSSC menggunakan semikonduktor TiO2-nanotube yang disintesis menggunakan metode two-step anodization dengan variasi waktu anodisasi pertama 1 jam, 2 jam, dan 3 jam dilanjutkan dengan anodisasi kedua selama 30 menit. Selain itu reduksi juga dilakukan terhadap sebagian TiO2 hasil anodisasi. Karakterisasi dilakukan menggunakan instrumen SEM, FTIR, UV-Vis DRS, UV-Vis dan potensiostat. Material ini kemudian dipadukan dengan ruthenium N719 sebagai sensitizer, Pt/FTO sebagai elektroda counter dan elektrolit I-/I3- dan dilakukan evaluasi kinerja DSSC. hasilnya, diperoleh nilai efisiensi sebesar 2,12%; 3,14%; dan 3,15% untuk variasi anodisasi pertama 1 jam, 2 jam, dan 3 jam tanpa direduksi dan 3,60%; 3,07%; dan 4,29 % untuk variasi 1 jam, 2 jam dan 3 jam yang kemudian direduksi.

Air pollution is the most pressing environmental problem humans face today. According to findings of the Intergovernmental Panel on Climate Change (IPCC) included in the United Nations Environment Programme's 2021 report, if significant emission reductions are not accomplished, rising CO2 emissions might result in a 1.50C to 20C increase in global temperature over the next two decades. Third-generation solar cells, known as dye-sensitized solar cells (DSSC) based on TiO2, are always being developed as one of renewable energy. This study aimed to create and investigate DSSC devices using TiO2 nanotubes synthesized via a two-step anodization method with variations in the first anodization time of 1 hour, 2 hours, and 3 hours, followed by a second anodization for 30 minutes. In addition, reduction was also performed on a portion of the TiO2 produced from the anodization process. Instruments such as SEM, FTIR, UV-Vis DRS, UV-Vis, and potentiostat were used to characterize the material. For DSSC performance assessment, the material was mixed with I-/I3- as a electrolyte, Pt/FTO as a counter electrode, and ruthenium N719 as a sensitizer. For the 1-hour, 2-hour, and 3-hour initial anodization variations without reduction, the research yielded efficiencies of 2.12%, 3.14%, and 3.15%; for the 1-hour, 2-hour, and 3-hour variations with subsequent reduction, the results showed 3.60%, 3.07%, and 4.29%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Universitas Indonesia, 1993
S28140
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arief Udhiarto
Depok: Fakultas Teknik Universitas Indonesia, 2003
TA3084
UI - Tugas Akhir  Universitas Indonesia Library
cover
Rizqy Pratama Rahman
"Skripsi ini bertujuan untuk merancang sel surya dengan menggunakan struktur dasar Triple Junction Solar Cell (TJSC) nc-Si:H/a-Si:H/a-SiGe:H. Lapisan a-SiGe:H pada TJSC tersebut yang merupakan semikonduktor berbahan jenis compound diganti dengan alloy Si1-xGex agar konsentrasi germaniumnya dapat direkayasa untuk mendapatkan sifat lapisan yang lebih baik dan menambah efisiensi sel surya. Setelah itu dilakukan penggantian lapisan a-SiC pada p-layer yang terdapat pada kedua junction tengah dan bawah dengan a-Si dan grading pada lapisan Si1-xGex untuk memperkecil diskontinuitas antara lapisan Si1-xGex dengan lapisan silikon di atasnya dan mengurangi rugi-rugi akibat cacat misfit dislocation. Rancangan disimulasikan dengan menggunakan software wxAMPS dan ditunjukkan hasil akhir sel surya nc-Si:H/a-Si:H/Si1-xGex:H paling optimal yang memiliki efisiensi sebesar 19,081146%, parameter VOC dan ISC sebesar 1,12782 V dan 20,49207 mA, dan parameter fill factor sebesar 82,5620%.

This thesis aims to design a solar cell by using the basic structure of the Triple Junction Solar Cell (TJSC) nc-Si:H/a-Si:H/a-SiGe:H. A layer of a-SiGe:H at the TJSC which is a type of compound semiconductor material is replaced with Si1-xGex alloy so that the germanium concentration can be engineered in order to obtain better layer properties and increase the efficiency of the solar cell. Once that is done then a-SiC on p-layers of the middle and bottom junctions are replaced with a-Si and the Si1-xGex layer is graded to minimize discontinuities between Si1-xGex layer with the layer of silicon on top of it and reduce losses due to the misfit dislocations defects. The design is simulated using wxAMPS software and the results of the final solar cell nc-Si:H/a-Si:H/Si1-xGex:H are shown most optimum which has an efficiency of 19,081146%, VOC and ISC parameters of 1,12782 V and 20,49207 mA, and fill factor parameter of 82,5620%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S62139
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andrew Bastian
"Sel surya perovskite merupakan sel surya yang menggunakan organic-metal halide sebagai lapisan aktif pada sel surya. Pada tahun 2009, sel surya perovskite pertama kali difabrikasi dan mencapai efisiensi sebesar 3,8% dan pada tahun 2014 sudah mencapai 19,3%. Efisiensi tertinggi yang tercatat adalah sebesar 23,3%. Dalam kurun waktu 4-5 tahun sel surya perovskite sudah menunjukkan potensinya yang besar karena sudah hampir dapat menyaingi sel surya berbahan silikon. Biaya fabrikasinya yang murah, stabilitas yang baik, dan proses fabrikasi yang mudah membuat sel surya perovskite sangat menjanjikan untuk bersaing dengan sel surya silikon. Salah satu metode fabrikasi sel surya perovskite adalah dengan menggunakan proses annealing. Proses annealing merupakan proses pemanasan subtrat sampai suhu tertentu sehingga zat pelarut mulai menguap.
Penelitian tentang sel surya perovskite sudah banyak, tetapi belum ada yang membahas secara langsung pengaruh suhu annealing pada struktur sel surya perovskite yang dipakai pada penelitian ini. Oleh karena itu pada penelitian ini akan dilakukan variasi suhu annealing 110ºC, 120ºC, dan 130ºC pada proses deposisi lapisan aktif sel surya perovskite dengan tujuan mencari suhu yang paling tepat terhadap efisiensi sel surya. Hasil dari penelitian ini menyatakan bahwa pada suhu 130ºC, sel surya perovskite mencapai efisiensi tertinggi yaitu sebesar 1,91%.

Perovskite solar cell is a solar cell using organic-inorganic metal halide material as active layer of the solar cell. In 2009, perovskite solar cell is firstly fabricated with efficiency of 3.8% and in 2014 perovskite solar cell has achieved efficiency of 19.3%. Highest efficiency of perovskite solar cell that has been reported is 22.1%. In 4-5 years of development, perovskite solar cell has proved its high potential to become a high efficiency solar cells. Cheap fabrication, good stability and easy fabrication processes make perovskite solar cells very promising to compete with silicon solar cells. One of the fabrication method of perovskite solar cells is by using annealing process. Annealing process is the process of heating the substrate to a certain temperature so that the solvent begins to evaporate.
There have been many studies on perovskite solar cells, but no one has directly discussed the effect of annealing temperature on the structure of perovskite solar cells used on this research. Therefore in this study, annealing temperature variations of 110ºC, 120ºC, and 130ºC will be carried out in the active layer deposition process of perovskite solar cells in order to find the most optimum temperature for the solar cells efficiency. The results of this study state that at 130ºC, perovskite solar cells reach the highest efficiency of 1.91%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anita Ratnasari
"Perkembangan teknologi sel surya terus meluas setiap tahunnya. Berbagai pendekatan studi melalui sifat/karakter material penyusunnya, ketebalan lapisannya hingga teknologi nano strukturnya terus dikembangkan. Bila ketiga faktor tersebut diintegrasikan dan disesuaikan akan menghasilkan unjuk kerja keluaran yang optimal. Silikon, sebagai bahan dasar teknologi sel surya sudah terbukti secara komersial mampu menghasilkan efisiensi hingga 20%, namun memiliki tingkat refleksi diatas 30%. Galium Nitrida (GaN), sebagai bahan material campuran semikonduktor golongan III-V, dengan sifat tuneable bandgap-nya mampu meningkatkan kemampuan transmisi spektrum cahaya hingga 72% pada panjang gelombang rendah. Tesis ini memperlihatkan hasil pengaruh material nanostruktur GaN sebagai lapisan anti-refleksi terhadap sel surya berbasis silikon. Perangkat lunak simulasi GPVDM akan memperlihatkan hasil pembacaan tingkat refleksi, transmisi, dan absorpsi terhadap kombinasi GaN/Si sel surya. Ketebalan lapisan GaN, berteknologi nanostruktur kisi, akan divariasikan dalam tiga ukuran dengan perbedaan 0,5e-07m (50nm) per ketinggiannya. Perbandingan dengan Si tanpa struktur GaN kisi, struktur GaN/Si dengan ketinggian kisi 50nm menunjukkan tingkat refleksi lebih rendah, yaitu sekitar 11% dan tingkat transmisi 3 kali lebih tinggi. Kisi dengan tinggi 150nm menghasilkan efisiensi tertinggi diantara uji sampel, yaitu sekitar 1% pada unjuk kerja GaN/Si sel surya. GaN dengan teknologi nanostruktur kisi sebagai anti-refleksi berpotensi sebagai salah satu alternatif untuk meningkatkan unjuk kerja sel surya berbasis silikon.

The development of solar cell technology continues to expand every year. Utilization of the constituent material characteristic, the thickness of the layers to the nanostructure technology are improved. When these three factors are integrated and adjusted, it will produce optimal output performance. Silicon, as a basic material in solar cell technology that has been commercially proven to be able to produce efficiencies of up to 20%, is known to have a reflection rate above 30%. Gallium Nitride (GaN), as a class III-V alloy semiconductor material, with its tune-able bandgap properties could increase the ability of light spectrum transmission to 72% at low wavelengths. This thesis report will show the results of the influence of GaN nanostructure grating as an anti-reflective layer on silicon-based solar cells. The GPVDM Simulator will show the reflection, transmission and absorption result of the GaN / Si solar cell. The grating nanostructure GaN layer thickness will be varied into three sample with 0,5e-07m difference for each. GaN/Si structure with 50nm height gratings’ yield 11% reflection lesser and 3 times higher on transmission level compare to Si solar cell without GaN grating structure. GaN with 150nm height grating structure provide the highest efficiency among the samples, around 1%. Hence, GaN with grating nanostructure technology as an anti-reflective has the potential as an alternative to improve the performance of silicon-based solar cells."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Kusnandar
"Sistem penurun tegangan (step down converter) pada solar sel adalah suatu sistem penurun tegangan dengan memanfaatkan solar sel sebagai sumbernya yang kemudian diswitching dengan menggunakan PWM (Pulse Width Modulation) yang dihasilkan mikrokontroller untuk mendapatkan tegangan Ac kotak pada inverter bridge mosfet. Kemudian tegangan Ac tersebut, akan diturunkan dengan menggunakan trafo step down sesuai dengan tegangan yang diinginkan. Setelah melalui rangkaian penyearah dan filter, tegangan tersebut dapat diatur menggunakan rangkaian adjustable tegangan. Sistem penurun tegangan ini untuk ke depannya dapat difungsikan untuk mengisi baterai. Maka tegangannya dapat diatur dari 6V sampai 24 V disesuaikan dengan kondisi baterai yang akan diisi.

Step down converter system on solar cell is a step down voltage system using solar cell of source then switched with pulse width modulation (PWM) is producted microcontroller to get AC voltage in inverter bridge mosfet. Then this AC voltage will step down using step down transformer with voltage if we want. After across rectifier and filter circuit, this voltage can tuned using voltage adjustable circuit. This step down converter for future can functioned to charging battery. Then this voltage can tuned from 6V to 24 V and other with battery condition will charged."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51419
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>