Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 79770 dokumen yang sesuai dengan query
cover
Brian Prama Krisnanda
"Sistem penilaian yang dilakukan oleh penilai manusia untuk menilai jawaban essay dalam jumlah besar dirasakan kurang efisien. Hal ini disebabkan karena penilai manusia memiliki keterbatasan fisik yang tidak dapat dihindari. Jika hanya menggunakan satu orang penilai, memang obyektifitas terjaga, namun waktu pemeriksaan menjadi lama. Jika menggunakan banyak orang penilai, waktu dalam memeriksa menjadi cepat, namun obyektifitas tidak terjaga. Oleh karena itu, untuk meningkatkan efisiensi periu dibuat suatu sistem penilaian yang pemeriksaannya cepat dan obyektifitias tetap terjaga.
Dalam skripsi ini dilakukan perancangan dan implementasi software penilaian essay otomatis dengan menggunakan salah satu metode penilaian essay otomatis yaitu Latent Semantic Analysis (LSA). Metode ini mengonversi kalimat ke dalam bentuk matriks untuk kemudian dilakukan perhitungan. Perhitungan dilakukan dengan menggunakan Singular Value Decomposition (SVD) dimana matriks didekomposisi menjadi tiga komponen matriks, yaitu dua matriks orthogonal dan satu matriks diagonal singular. Kemudian dilakukan reduksi terhadap matriks diagonal singular-nya sehingga menjadi berdimensi dua, dan transpose matriks untuk salah satu matriks orthogonalnya. Setelah itu dilakukan rekonstruksi matriks awal dengan cara mengalikan kembali tiga komponen matriks yang sudah diolah tersebut. Proses penilaian diambil dari perbandingan normalisasi Frobenius antara matriks jawaban dengan matriks referensi yang sudah direkonstruksi.
Pada perancangannya, sistem penilaian essay otomatis ini berupa algoritma yang terbagi menjadi beberapa bagian, diantaranya yaitu program utama, sub program, dan bagian program terperinci diantaranya program konversi jawaban ke matriks, dan program perhitungan SVD. Agar dapat dikembangkan sehingga dapat digunakan melalui jaringan internet, program ini didesain dengan menggunakan aplikasi web. Implementasi dari sistem dilakukan pada sebuah komputer sekaligus merupakan server dan client. Agar sistem dapat berjalan dengan baik, maka diinstal beberapa program diantaranya Apache Server, MySQL Server, PHP, dan Matlab.
Untuk menguji performa dari sistem aplikasi ini dilakukan beberapa pengujian. Pengujian dilakukan dengan tujuan untuk mengetahui bagaimana korelasi antara nilai jawaban mahasiswa yang dihasilkan dengan menggunakan metode LSA, dengan nilai jawaban mahasiswa yang dihasilkan oleh human rater. Dari pengujian didapatkan nilai korelasi antara penilaian otomatis yang menggunakan metode LSA dengan penilaian yang dilakukan oleh human rater ialah sebesar 0,86 - 0,96."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S39970
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nahar Adi Gunawan
"Pada togas akhir ini dilakukan perancangan dan implementasi software sistem penilaian essay otomatis. Program aplikasi sistem penilaian essay otomatis ini berfungsi untuk menilai essay secara otomatis dengan menggunakan metode Latent Semantic Analysis atau LSA. Metode Latent Semantic Analysis (LSA) adalah teori atau metoda untuk menyalin dan merepresentasikan arti kalimat dengan perhitungan matematis atau statistik. LSA mengkonversi essay ke dalam matriks. Setiap kata dalam paragraf kalimat direpresentasikan sebagai bans dan kolom matriks. Dengan menggunakan teknik matrik aljabar SVD (Singular Value Decomposition), matrik didekomposisi menjadi tiga komponen matrik, yaitu dua matriks orthogonal dan satu matriks diagonal singular.
Proses penilaian diambil dari perbandingan normalisasi Frobenius nilai singular positif atau tidak nol padakomponen diagonal matriks referensi dan matriks jawaban. Selanjutnya sistem penilaian essay otomatis metode LSA ini diaplikasikan pada software berbasis web dengan alasan bahwa perkembangan teknologi intemet telah membuat perbedaan jarak dan waktu menjadi seperti tidak berarti lagi, hal ini tentunya sangat efisien untuk program aplikasi seperti sistem penilaian essay otomatis ini karena yang diuji tidak harus ada di satu tempat dan waktu yang bersamaan, tetapi mereka bisa mengakses dari tempatnya masing-masing.
Pada perancangannya sistem penilaian essay otomatis ini berupa algoritma yang terbagi menjadi beberapa bagian, diantaranya yaitu program utama, sub program, dan bagian program terperinci. Dan sistem penilaian essay otomatis ini diimplementasikan pada software berbasis web yang berintegrasi dengan web server sebagai media koneksi, database server sebagai media penyimpanan, dan software matematis sebagai tempat pemprosesan aljabar Singular Value Decomposition yang merupakan metode dari Latent Semantic Analysis atau LSA."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S40167
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agoes Prio Utomo
"Sistem penilaian yang dilakukan oleh penilai manusia untuk menilai jawaban essay dalam jumlah besar dirasakan kurang efisien. Hal ini disebabkan karena penilai manusia memiliki keterbatasan fisik yang tidak dapat dihindari. Untuk meningkatkan efisiensi perlu dibuat suatu sistem penilaian yang pemeriksaannya cepat dan obyektifitias tetap terjaga.
Pada tugas skripsi ini dilakukan perancangan dan implementasi interface software sistem penilaian essay otomatis serta aplikasi keamanan pada databasenya. Program aplikasi sistem penilaian essay otomatis ini berfungsi untuk menilai essay secara otomatis dengan menggunakan metode Latent Semantic Analysis atau LSA. Metode LSA adalah teori atau metoda untuk menyalin dan merepresentasikan arti kalimat dengan perhitungan matematis atau statistik. LSA mengkonversi essay ke dalam matriks. Setiap kata dalam paragraf kalimat direpresentasikan sebagai baris dan kolom matriks. Dengan menggunakan teknik matrik aljabar SVD (Singular Value Decomposition) dan normalisasi Frobenius. Selanjutnya sistem penilaian essay otomatis metode LSA ini diaplikasikan pada software berbasis web.
Pada perancangannya sistem penilaian essay otomatis ini berupa algoritma yang terbagi menjadi beberapa bagian, dengan menggunakan bahasa UML (Unified Modelling Language). Dengan menggunakan metode ini maka interface user dapat dirancang secara lebih efisien dan terstruktur, mulai dari struktur program utama sampai kepada struktur program yang lebih spesifik di dalamnya. Faktor keamanan database diimplementasikan melalui proses enkripsi MD5 bagi password user dan aplikasi session pada aplikasi untuk mencegah user mengakses halaman yang bukan haknya. Dengan menggunakan enkripsi MD5 maka password user dapat lebih terproteksi, karena dengan enkripsi ini, input password user dengan panjang dan karakter yang bervariasi dapat diubah menjadi bit hexadesimal dengan panjang yang tetap dan merupakan proses satu arah (tidak reversibel). Sedangkan dengan menggunakan aplikasi session maka akses user pada sistem menjadi lebih terkontrol dan mencegah penggunaan sistem yang tidak semestinya.
Untuk menguji performa dari sistem aplikasi ini dilakukan beberapa pengujian. Pengujian dilakukan dengan tujuan untuk mengetahui kecepatan sistem dalam melakukan proses penghitungan jawaban essay dengan menggunakan metode LSA, dengan cara memasukkan variasi panjang jawaban, jumlah kata kunci dan jumlah soal pada proses. Dari pengujian didapatkan bahwa jumlah soal, jumlah kata kunci dan panjang jawaban mempengaruhi kecepatan proses, semakin banyak jumlah soal, jumlah kata kunci dan panjang jawaban maka waktu proses yang dibutuhkan sistem juga semakin bertambah (hubungan positif) dengan korelasi sebesar 0,445872325 sampai 0,984473824."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S40179
UI - Skripsi Membership  Universitas Indonesia Library
cover
Reza Bhaskoro Wibowo
"Dalam suatu ujian, terutama di tingkat universitas, terdapat berbagai macam bentuk soal yang harus dikerjakan oleh mahasiswa. Salah satu bentuk yang banyak digunakan adalah ujian berupa esai. Namun ketika jawaban sudah terkumpul, terdapat kendala yang dihadapi oleh dosen, yaitu melakukan penilaian esai yang banyak memakan waktu dan tenaga. Oleh karena itu, dikembangkanlah suatu sistem untuk membantu pekerjaan dosen tersebut.
Simple O merupakan sistem yang dikembangkan di Departemen Teknik Elektro Universitas Indonesia. Mulai dikembangkan pada tahun 2007, Simple O merupakan suatu sistem yang dapat melakukan penilaian terhadap perkerjaan mahasiswa yang bersifat esai. Tujuan dari diciptakannya sistem ini adalah untuk membantu dosen dalam melakukan penilaian terhadap ujian yang telah dilakukan mahasiswa.
Simple O menggunakan algoritma Latent Semantic Analysis (LSA) ketika pertama kali dikembangkan. Kemudian sistem tersebut dikembangkan hingga menjadi algoritma Generalized Latent Semantic Analysis (GLSA) dan pada akhirnya dikembangkan algoritma Hybrid.

On some tests, especially in university, there are lots of types of questions that must be done by the students. One of them is essay. But when the answers are collected, there is a problem that is faced by the lecturer, the amount of time and energy that need to use by them. Because of that, people developped a system that can help the lecturer.
Simple O is a system that is developped in Electrical Engineering Department, University of Indonesia. The development was started in 2007, and it is a system that can grade the work of the students, in the form of essay. The purpose of the invention of this system is to help the lecturer in giving grades to the tests that have been done by the students.
Simple O uses LSA algorithm when the first time of its development. Then the system has been developped into Generalized Latent Semantic Analysis (GLSA) and finally it becomes Hybrid algorithm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S53112
UI - Skripsi Membership  Universitas Indonesia Library
cover
T.M. Rikza Abdy
"Stemming merupakan salah satu bagian penting dalam proses penilaian esai secara otomatis. Stemming merupakan proses transformasi suatu kata-kata tertentu menjadi kata dasarnya. Salah satu algoritma stemming yang ada adalah dengan menggunakan persamaan kata, dimana semua kata yang berimbuhan dan istilah yang berbeda untuk satu kata bermakna sama dapat disetarakan bobotnya. Untuk itu proses stemming menggunakan persamaan kata ini akan diimplementasikan pada sistem penilai esai otomatis Simple-O berbasis Generalized Latent Semantic Analysis (GLSA) yang bertujuan untuk meningkatkan ketepatan penilaiannya agar semakin mendekati hasil penilaian oleh manusia.
Dari 98 kali pengujian, kinerja GLSA menggunakan proses stemming memberikan hasil yang lebih baik dengan tingkat ketepatan sebanyak 72 kali atau sekitar 73,4% lebih unggul dibandingkan GLSA tanpa proses stemming yang hanya unggul sebanyak 20 kali dari 98 kali percobaan atau dengan presentase sekitar 20,4%. Hal ini menunjukkan bahwa implementasi proses stemming pada Simple-O berbasis GLSA menghasilkan hasil yang lebih baik daripada GLSA tanpa proses stemming.

Stemming is one of the important processes on automatic essay grading. Stemming is a process to transform a word into its root word in order to make essay grader becoming more accurate. One of stemming algorithm that have developed is using word similiarity, where in this algorithm all the prefixed word or the other words that have a similar meaning have an equal weight. This algorithm is implemented on an automatic essay graderbased on Generalized Latent Semantic Analysis (GLSA) called Simple-O in order to match the grade from human raters.
The experiment result shows that from 98 samples GLSA algorithm with the stemming process outperform GLSA without stemming 72 times with the percentage about 73,4%, on the other hand GLSA without stemming only give the better result 20 times with the percentage of 20,4%. This experiments result shows that GLSA based Simple-O using stemming algorithm gives better result than GLSA without stemming process.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47509
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naiza Astri Wulandari
"Sistem Penilaian Esai Otomatis (Simple-O) telah dibuat menggunakan algoritma K-Means dan metode Latent Semantic Analysis (LSA). Jawaban karangan siswa pertama-tama akan diklasifikasikan ke dalam kelas-kelas sesuai dengan topik masing-masing nomor, dan akan memisahkannya dari jawaban siswa yang tidak sesuai konteks kemudian akan dilakukan proses LSA yang merepresentasikan kata ke dalam matriks, yang kemudian matriks direduksi menggunakan Singular Value Decomposition dan dilanjutkan dengan mencari norma frobenius yang merupakan nilai dari setiap soal. Pada penelitian ini dilakukan uji coba dengan menggunakan 4 skenario dan hasil penelitian SIMPLE-O menggunakan algoritma K-Means dan LSA menghasilkan akurasi rata-rata sebesar 74% yaitu hasil skenario pengujian 1

An Automatic Essay Assessment System (Simple-O) has been created using the K-Means algorithm and the Latent Semantic Analysis (LSA) method. Students' essay answers will first be classified into classes according to the topic of each number, and will separate them from student answers that do not fit the context then an LSA process will be carried out which represents the word into a matrix, which is then reduced by using Singular Value. Decomposition and continue by looking for the Frobenius norm which is the value of each question. In this study, trials were carried out using 4 scenarios and the results of the SIMPLE-O research using the K-Means and LSA algorithms produced an average accuracy of 74%, namely the results of the test scenario number 1."
Depok: FAkultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diego Octaria
"Setiap proses pembelajaran memerlukan suatu evaluasi berupa ujian, begitu pula dengan e-learning. Pada proses e-learning jenis ujian yang banyak digunakan adalah jenis ujian pilihan ganda dan isian singkat. Alasannya adalah kemudahan dalam proses penilaian, komputer yang menjadi komponen penting dalam proses e-learning lebih mudah dalam melakukan penilaian ujian pilihan ganda dan isian singkat secara akurat karena jawaban yang ada harus sama baik pilihan maupun kata-katanya, dibandingkan dengan melakukan penilaian jenis ujian esai yang lebih kearah pemahaman bukan hafalan. Padahal jenis ujian pilihan ganda dan isian singkat memiliki banyak kekurangan bila dibandingkan dengan jenis ujian esai. Hal inilah yang mendasari lahirnya penilaian jawaban esai secara otomatis untuk mempersingkat pemeriksaan jawaban esai.
Ada banyak metode yang telah dikembangkan untuk penilai jawaban esai secara otomatis, salah satunya adalah Latent Semantic Analysis (LSA). Metode ini mempunyai ciri khas hanya mementingkan kata-kata kunci yang terkandung dalam sebuah kalimat tanpa memperhatikan karakteristik linguistiknya. Pada LSA, kata-kata direpresentasikan dalam sebuah matriks semantik dan kemudian diolah secara matematis menggunakan teknik aljabar linier Singular Value Decomposition (SVD). Implementasi pembobotan pada sistem penilaian esay otomatis dilakukan dengan menggunakan bahasa php, pada percobaan menggunakan jawaban esay dari quiz jaringan komputer.
Hasil ujicoba menunjukkan hal-hal yang mempengaruhi kecepatan proses aplikasi adalah banyaknya jawaban mahasiswa dan banyaknya user yang mengakses aplikasi. Dari percobaan juga menunjukkan bahwa skema yang paling mendekati dengan human rater adalah skema 4 yaitu dengan pembobotan lokal jawaban mahasiswa untuk Square Root dan pembobotan dosen Binary dan tidak menggunakan pembobotan global.

Every learning process needs an evaluation in the form of test. At elearning process the test type many used is multiple choice and short answer test type. Its reason is amenity in course of assessment, the computer become the important component in course of e-learning easier in doing assessment of multiple choice and short anwer test in accurate because the answer have to be same exactly, compared to do assessment test of essay type more toward understanding and not memorizing. Though multiple choice and short answer test type have many insuffiencies if compared to the test type esai. These matters constitute the creation of automatically assessment of answer esai to take a short cut inspection of essay answer.
There are many methods which have been developed for the automatically essay assessor, one of them is Latent Semantic Analysis (LSA). This Method has the unique method only making account of the key words implied in a sentence regardless of his linguistics characteristic. In LSA, words represented in a semantic matrix and then mathematicaly proceed to usely linear algebra technique Singular Value Decomposition (SVD). Wight implementation at automatically esay assessment system is done by using language php, In experiment the esay answer are from quiz computer network.
Result of experiment show the things influence speed of application process is the number of student answers and to the number of user accessing application. Of attempt is also indicate that the scheme very come near with human rater is scheme of 4 that is with local wight [of] student answer to Square Root and lecturer wight Binary and don't use any global wight.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40589
UI - Skripsi Open  Universitas Indonesia Library
cover
Hanifah Khairunnisa
"ABSTRAK
Dalam penelitian ini, Sistem Penilaian Esai Ototmatis (Simple-O) dirancang menggunakan algoritma Latents Semantic Analysis (LSA), Term Frequency-Inverse Document Frequency, dan algoritma Support Vector Machine (SVM). Algoritma LSA digunakan untuk mengolah kata-kata yang merepresentasikan kata-kata dalam teks menjadi matriks. Algoritme SVM digunakan untuk mengklasifikasikan esai jawaban siswa berdasarkan topiknya. TF-IDF digunakan untuk menimbang setiap kata dalam teks yang akan menjadi input SVM. Dari penelitian ini ketepatan penggunaan jawaban dosen sebagai jawaban referensi adalah 72,01% dan ketepatan penggunaan kata kunci sebagai jawaban referensi adalah 69,5%.

ABSTRACT
In this study, the Automatic Essay Assessment System (Simple-O) was designed using the Latents Semantic Analysis (LSA) algorithm, Term Frequency-Inverse Document Frequency, and the Support Vector Machine (SVM) algorithm. The LSA algorithm is used to process words that represent words in the text into a matrix. The SVM algorithm is used to classify student essays based on their topic. TF-IDF is used to weigh each word in the text that will become SVM input. From this research, the accuracy of using lecturers' answers as reference answers was 72.01% and the accuracy of using keywords as reference answers was 69.5%."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Di dalam proses pembelajaran, seorang pengajar tentunya membutuhkan tolak ukur yang mengindikasikan tingkat penyerapan murid-muridnya atas proses belajar mengajar yang terjadi dengan melakukan ujian, baik dengan format pilihan ganda, isian singkat, maupun esai. Dari kesemua format yang ada, ujian esai lah yang dianggap paling mampu merepresentasikan tingkat pemahaman siswanya. Namun ujian esai tersebut memiliki keterbatasan di dalam penilaian ujiannya. Sementara itu. sistem penilaian yang menggunakan komputer sampai saat ini masih terbatas untuk ujian pilihan ganda. Oleh karena itu, pada skripsi ini akan dikembangkan sistem aplikasi penilaian esai otomatis dengan menggunakan metode penilaian Latent Semantic Analysis (LSA) yang berbasis web. Metode LSA dipilih karena dalam menilai ujian hanya menitikberatkan pada kata-kata yang terkandung di dalam tulisan tanpa memperhatikan karakteristik linguistiknya. Di dalam pengembangan sistem ini, program aplikasi sistem dibagi menjadi beberapa modul. Sedangkan untuk pengembangan keamanan sistem, diterapkan aplikasi session dan cookie agar akses ke dalam sistem lebih terkontrol serta teknik enkripsi SHA-1 pada password user agar password seseorang tidak dapat diketahui oleh siapapun. Pengujian kecepatan akses dilakukan pada sistem dengan tujuan untuk melihat tingkat performa dari sistem yang telah dibuat. Pengujian dilakukan dengan memvariasikan panjang jawaban, jumlah kata kunci, dan jumlah soal. Dari hasil pengujian didapatkan bahwa pengaruh jumlah kata kunci dan panjang kalimat jawaban terhadap kecepatan akses sistem adalah antara 4e pangkat -3 - 0,8 ms, sedangkan pertambahan sebuah soal pada satu ujian akan mengakibatkan pertambahan waktu akses sebesar 1 detik. Sedangkan implementasi peningkatan keamanan sistem telah berjalan dengan baik."
Fakultas Teknik Universitas Indonesia, 2006
S40742
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adisa Larasati
"ABSTRAK
Pada awalnya, Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia telah mengembangkan sebuah sistem penilaian esai otomatis SIMPLE-O untuk ujian esai dalam bahasa Indonesia, namun kali ini dikembangkan untuk ujian esai dalam bahasa Jepang. Skripsi ini akan membahas mengenai penerapan dan pengembangan SIMPLE-O untuk ujian bahasa Jepang berbasis algoritma latent semantic analysis LSA dalam bahasa pemrograman Python. Pengujian menggunakan pendekatan text-similarity frobenius norm. Jenis input teks untuk proses LSA berpengaruh terhadap tingkat akurasi sistem, begitu pula dengan jenis nilai yang dimasukkan ke dalam matriks term-document matrix TDM . Dari hasil pengujian dan analisis yang telah dilakukan, apabila menggunakan input teks dan jenis nilai yang dimasukkan ke dalam matriks TDM yang tepat, LSA mampu menghasilkan akurasi sebesar 99.93.

ABSTRACT
In the beginning, Department of Electrical Engineering in Universitas Indonesia has developed an automated essay scoring system SIMPLE O for essay tests in Indonesian, but this time it is developed for essay tests in Japanese. This thesis will discuss about the development and implementation of SIMPLE O for essay tests in Japanese based on latent semantic analysis LSA Algorithm written in Python programming language. The text similarity approach used in this thesis is frobenius norm to measure similarity between texts. The type of text input for the LSA process influences the rate of accuracy of the system, the type of value inserted into the term document matrix TDM can also influence the rate of accuracy of the sysstem. From the result of test and analysis that has been done, given the appropriate type of text input and type of value inserted into the TDM, LSA is able to obtain a rate of accuracy of 99.93 "
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>