Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 76873 dokumen yang sesuai dengan query
cover
Panji Seto Damarjati
"Pengendali prediktif menggunakan prediksi dari keluaran sistem yang akan dikendalikan. Nilai prediksi ini didapat dari pemodelan sistem, dimana penggunaan model sistem pada proses perancangan, menjadi ciri khas dari pengendali prediktif. Pengendali prediktif atau dalam banyak literatur sering disebut sebagai Model Predictive Control, merupakan metode pengendali yang dapat memperhitungkan batasan-batasan (costraints) yang ada dalam sistem. Sehingga kehadiran constraints pada sistem dapat diperhitungkan dengan menggunakan algoritma MPC.
Dalam skripsi ini algoritma MPC diterapkan pada sistem dua tangki dengan satu masukan dan satu keluaran. Masukan sistem berupa tegangan pompa sedangkan keluarannya berupa tinggi fluida pada tangki. Batasan amplitudo sinyal kendali diterapkan pada perancangan ini untuk melihat kinerja MPC dalam menangani constraints. Solusi Quadratic Programming yang digunakan untuk menangani kasus MPC dengan constraints pada skripsi ini adalah metode Active Set. Dalam metode Active Set, nilai sinyal kendali diambil supaya ada bagian dari pertidaksamaan constraints menjadi persamaan. Kemudian dengan menggunakan kondisi Karush-Kuhn-Tucker solusi yang berupa nilai optimal dari perubahan sinyal kendali akan didapat.
Hasil simulasi yang dilakukan menunjukkan, keluaran selalu dapat mengikuti trayektori acuan dan sinyal kendali yang didapat juga baik. Hasil simulasi juga menunjukkan bahwa faktor bobot pada sinyal kendali R, dan panjangnya Prediction Horizon P, sangat mempengaruhi unjuk kerja dari algoritma MPC. Perbandingan juga dilakukan antara alogritma MPC constraints dengan algoritma pengendali Formula Ackermann, dimana MPC constraints menunjukkan kinerja yang lebih baik."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S40106
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lumban Gaol, Abdon Jonas
"Pengendalian level fluida di dalam tabung dan pengendalian aliran fluida antar beberapa tabung merupakan permasalahan dasar dalam industri proses. Masukan aliran fluida ke dalam tabung dan antar tabung haruslah dijaga pada kondisi tertentu sehingga keluaran sistem bisa sesuai dengan yang diinginkan. Berbagai macam pengendali dirancang untuk mengendalikan level fluida ini dengan baik, sehingga error yang dihasilkan pun semakin bisa diminimalisir. Pengendali PID dan MPC merupakan contoh pengendali yang bisa digunakan dalam mengontrol level fluida tersebut.
Di dalam seminar tesis ini akan dirancang pengendali PID (Proportional-Integral-Derivative) dan Model Predictive Control (MPC) untuk mengendalikan level fluida di dua tangki terhubung. Sebelum pengendali PID dan MPC ini dirancang, model non-linier terlebih dahulu dibentuk bedasarkan sistem dua masukan aliran fluida dan dua keluaran sistem berupa ketinggian level fluida pada kedua tabung. Model non-linier sistem multivariabel (Two Input Two Output - TITO) ini kemudian dilinierisasi pada titik kerja yang dipilih untuk memperoleh nilai ruang keadaan A, B, C dan D yang kemudian digunakan untuk membentuk fungsi alih sistem. Selain proses linierisasi, identifikasi dengan metode Kuadrat Terkecil juga dilakukan untuk menghasilkan model linier sistem yang baru sebagai pendekatan dalam mengontrol model non-linier sistem dengan MPC.
Dalam sistem multivariabel coupled-tanks ini masih terdapat interaksi yang kuat antar variabel masukan-keluaran, sehingga fungsi alih dekopler pun dirancang untuk mengurangi atau menghilangkan efek kopling antar variabel masukan-keluaran ini. Pengendali PID dan MPC yang dirancang akan digunakan dalam simulasi untuk mengendalikan model linier/fungsi alih (dengan dekopler) dan model non-linier sistem.
Hasil simulasi pengendali PID dan MPC untuk model linier menunjukkan respon sistem yang baik, dimana waktu settling-nya cenderung relatif kecil. Juga hasil simulasi pengendali PID dan MPC untuk model non-linier, meskipun menunjukkan respon sistem yang cenderung lambat, masih bisa dikatan relatif baik. Setelah membandingkan hasil simulasi sistem dengan pengendali PID dan MPC yang dirancang, maka MPC merupakan pengendali yang lebih baik digunakan untuk mengendalikan sistem multivariabel coupled-tanks ini.

The control of liquid level in tanks and flow between tanks is a basic problem in the process industries. The amount of liquid flowed into tanks and the flow of liquid between tanks has to be maintained at certain conditions in order to meet the desired performances. Many controllers have been designed to control the liquid level in tanks with the intention of reducing errors during and or after control process. PID controller and MPC are two of many controllers that could be designed to control the liquid level in tanks.
In this Master's thesis, PID (Proportional-Integral-Derivative) controller and Model Predictive Control (MPC) are designed to control the liquid levels in two coupled tanks. Before designing PID controller and MPC, the complete nonlinear dynamic model of the plant needed to be introduced for a case involving two input flows of liquid and two output variables, which are the level of the liquid in two tanks.
This multivariable (Two Input Two Output - TITO) nonlinear model would be then linearised based on selected operating point in order to obtain the value of state-space variables A, B, C and D. These values are converted to transfer function form. Besides that, system identification with Least Square method is also used to yield a new state-space model as an approach model to control the nonlinear model with MPC. Due to the high interactions between input-output variables, decoupler needed to be designed with the aim of reducing or eradicate these between input-output variables coupling effects. Afterwards, the designed PID controller and MPC will be used in simulation in controlling the linear model/transfer function (with decoupler) and the nonlinear model of the coupled-tanks multivariable system.
The result of simulation using PID controller and MPC in controlling the linear model of the system shows good performance in terms of rise time and settling time. In Addition, the result of simulation using nonlinear model, despite the slow system's response, shows satisfactory performance in terms of steady-state behavior, in which the output signals eventually meets the desired reference signals. After comparing the results of system simulation both with PID Controller and MPC, the writer may then infers that MPC is the better one to control this coupled-tanks multivariable system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T34991
UI - Tesis Membership  Universitas Indonesia Library
cover
Grancharova, Alexandra
"This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations;
Ø Nonlinear systems described by first-principles models and nonlinear systems described by black-box models;
- Nonlinear systems with continuous control inputs and nonlinear systems with quantized control inputs;
- Nonlinear systems without uncertainty and nonlinear systems with uncertainties (polyhedral description of uncertainty and stochastic description of uncertainty);
- Nonlinear systems, consisting of interconnected nonlinear sub-systems.
The proposed mp-NLP approaches are illustrated with applications to several case studies, which are taken from diverse areas such as automotive mechatronics, compressor control, combustion plant control, reactor control, pH maintaining system control, cart and spring system control, and diving computers.
"
Berlin: [Springer, ], 2012
e20398271
eBooks  Universitas Indonesia Library
cover
"Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today.
The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using “computationally intensive controls,” so the second part of this book addresses the solution of optimization problems in “real” time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance.
The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading."
Switzerland: Birkhäuser Cham, 2019
e20502512
eBooks  Universitas Indonesia Library
cover
Budianto
"Kenyamanan dalam berkendara merupakan salah satu hal penting yang dikembangkan pada industri otomotif. Salah satu komponen yang memegang peranan penting dalam memberikan rasa nyaman bagi pengemudi saat berkendara adalah sistem suspensi, salah satu jenisnya adalah sistem suspensi semi-aktif. Sumber tenaga eksternal tidak diperlukan pada sistem suspensi semi aktif dimana nilai damping coefficient dapat diubah untuk mengendalikan disipasi energi pada damper. Karakteristik sistem suspensi semi-aktif yang hanya dapat mendisipasikan energi menjadi constraint sinyal kendali sesuai dengan state dari sistem. Kontur jalan juga menjadi gangguan pada sistem suspensi yang akan mempengaruhi kinerja sistem, oleh karena itu diperlukan pengendali yang prediktif.
Pengendali model predictive control (MPC) dengan constraint digunakan untuk mengendalikan sistem suspensi semi-aktif diskrit hasil identifikasi dari sistem kontinu dengan menggunakan metode identifikasi least square. Perancangan pengendali MPC dilakukan dengan menentukan panjang prediction horizon, control horizon serta matriks bobot Q dan R. Uji pengendalian sistem suspensi semi-aktif menggunakan pengendali MPC dengan constraint dilakukan dengan mengamati kinerja pengendalian perpindahan sprung mass dari sistem suspensi semi-aktif dengan road profile sebagai gangguan sistem. Hasil pengendalian sistem suspensi semi-aktif kontinu dengan half car model yang dilakukan dengan simulasi menunjukkan kinerja pengendalian perpindahan sprung mass yang baik untuk berbagai jenis road profile.

Ride comfort is one of the important things in automotive industry. The component which took the responsibility in ride comfort are suspension system, one of them is semi-active suspension. An external power source is not needed in semi-active suspension system where the damping coefficient value is adjusted to control the amount of dissipated energy by damper. The characteristics of semi-active suspension system which only can dissipate energy become constraints to control signal appropriate with the state of system. The height of road surface also affect suspension system?s performance as disturbances so in order to overcome that problem a predictive controller is needed.
Controller with model predictive control (MPC) strategy with constraints is used to control discrete semi-active suspension system from identification result of continuous system by using least square identification method. Design of MPC controller is done by determine the length of prediction horizon, control horizon and weight matrix Q and R. The test of semi-active suspension system control using MPC controller with constraints is determined by sprung mass displacement control performance of semi-active suspension system with road profile as disturbances. Simulation result of the control of continuous semi-active suspension system with half car model show that the sprung mass displacement control performance is good for many kinds of road profiles.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64652
UI - Skripsi Membership  Universitas Indonesia Library
cover
Antoni Aldila
"Sistem tata udara presisi atau yang lebih dikenal dengan Precision Air Conditioning (PAC) merupakan mesin refrigerasi yang bekerja berdasarkan konsep termodinamika. Sistem tata udara presisi digunakan di ruang pusat data untuk menjaga temperatur dan kelembaban di dalam kabinet agar peralatan IT di dalam kabinet tidak cepat rusak. Temperatur ideal yang harus dicapai di dalam kabinet berkisar antara 20º - 25ºC, sedangkan kelembaban relatif (RH) yang harus dijaga di dalam kabinet berkisar antara 45-55%. Namun untuk mencapai keadaan tersebut, dibutuhkan pengendalian sistem supaya sistem dapat bekerja dengan keluaran seperti yang diinginkan.
Model predictive control merupakan salah satu metode pengendali prediktif yang populer digunakan di dunia indutri. Sistem tata udara presisi yang dikendalikan dalam penelitian ini merupakan sistem multi input single output (MISO) dengan masukan berupa kecepatan putaran kipas kompresor dan kecepatan aliran udara volumetrik, dan keluaran yang dikendalikan adalah suhu keluaran dari kondenser kedua yang menuju kabinet dari sistem tata udara presisi. Diuji tiga model sistem tata udara presisi, model linier, model nonlinier tanpa beban heat sensible peralatan IT, dan model nonlinier dengan beban sensible peralatan IT yang divariasikan dengan pendekatan model linier biasa hasil identifikasi PO-MOESP dan model linier dengan vektor bias hasil identifikasi menggunakan metode kuadrat terkecil.
Hasil pengendalian MPC untuk ketiga plant sistem tata udara presisi menujukkan performa yang baik dalam pengendalian, dilihat dari keluaran sistem yang mengikuti trajektori acuan yang diberikan.

Precision Air Conditioning (PAC) is a refrigerant machine that works based on thermodynamics concept. PAC is in implemented data center in order to stabilize the temperature and the humidity in cabinet in order to prevent IT damage integrated in the cabinet. The desired ideal temperature for the cabinet is from 20oC to 25oC and the desired relative humidity (RH) is from 45-55%. However, to achieve such a state, it takes control of the system so that the system can work with the output as desired.
Model predictive control is a predictive control method which is popularly used in industries world. Precision air conditioning system are controlled in this study is a multi-input single output (MISO) system with input in the form of fan rotation speed of the compressor and the air volumetric flow rate, and the controlled output is the temperature of the output of the second condenser to the cabinet of the precision air conditioning system. Tested three models of precision air conditioning system, linear models, nonlinear models without the burden of sensible heat IT equipment, and nonlinear models with variation of sensible heat IT equipment load with ordinary linear model approach to the identification of PO-MOESP and linear models with bias the results of identification using the method least squares.
MPC control results for the third plant of PAC systems showed good performance in control, viewed from the system output to follow a given reference trajectory.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T36013
UI - Tesis Membership  Universitas Indonesia Library
cover
Melvin, Jesse
"Pada sistem kendali konvensional, batasan-batasan seperti amplitudo dan slew rate sinyal kendali tidak diperhitungkan pada proses pengendalian. Hal ini tentu dapat menyebabkan hasil kendali menjadi kurang baik, terutama jika terjadi pemotongan paksa terhadap sinyal kendali sebelum masuk ke plant. Untuk mengatasi hal tersebut dirancanglah suatu pengendali MPC. Dengan MPC, keluaran proses yang akan datang dapat diprediksi dan batasan-batasan yang ada tidak diabaikan sehingga keluaran sistem menjadi bagus. Selain keluaran sistem menjadi bagus, adanya batasan juga dapat membuat kinerja alat menjadi optimal.
Pada skripsi ini, sistem yang akan dikendalikan dengan metode MPC dengan constraints adalah Coupled-Tank Basic Process Rig 38-100. Model yang digunakan pada perancangan pengendali berbentuk ruang keadaan yang didapat dengan menggunakan metode Kuadrat Terkecil berdasarkan pada data masukan dan data variabel keadaan alat. Masukan sistem adalah tegangan pompa pada tangki pertama dan keluaran yang akan dikendalikan adalah ketinggian air pada tangki kedua.
Dari uji eksperimen terbukti bahwa metode pengendali MPC dengan constraints memberikan hasil yang lebih baik dibandingkan dengan metode Aturan Kendali Ruang Keadaan. Hal tersebut dapat terlihat dari tanggapan sistem, dimana tanggapan sistem dengan menggunakan metode MPC lebih cepat serta tidak adanya overshoot maupun undershoot pada keluaran sistem saat terjadi perubahan nilai trayektori acuan.

In conventional control system, constraints, such as amplitude and slew rate of input signal are not computed in control process. This matter of course can make the control result become worst, especially when force cutting occur to input signal before it enters to the plant. To solve those problems, a MPC controller is designed. With MPC, process output can be predicted and the existence of constraints will not be ignored and, as the result, it makes output system become well. Besides improve output system quality, the existence of the constraints can also make the device works at optimum condition everytime.
In this following final thesis, system that will be controlled by MPC with constraints method is Coupled-Tank Basic Process Rig 38-100. Model that is used in controller design has state space form. This model is formed by using Least Squares method based on input and state variable data. Input system is pump in first tank and output that will be controlled is water level in second tank.
Experiments prove that MPC with constriants give better result than State Controller method. With MPC, system response become faster and there are no overshoot nor undershoot when the set point change.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40525
UI - Skripsi Open  Universitas Indonesia Library
cover
Hermanto Ang
"Pada sistem kendali konvensional, batasan-batasan seperti amplitudo dan slew rate sinyal kendali tidak diperhitungkan pada proses pengendalian. Hal ini tentu dapat menyebabkan hasil kendali menjadi kurang baik, terutama jika terjadi pemotongan paksa terhadap sinyal kendali sebelum masuk ke plant. Untuk mengatasi hal tersebut dirancanglah suatu pengendali Model Predictive Control (MPC). Dengan MPC, keluaran proses yang akan datang dapat diprediksi dan batasan-batasan yang ada tidak diabaikan sehingga keluaran sistem menjadi bagus. Selain keluaran sistem menjadi bagus, adanya batasan juga dapat membuat kinerja alat menjadi optimal.
Skripsi ini bertujuan untuk merancang jenis pengendali Model PredictiveControl (MPC) yang akan diterapkan pada sebuah sistem nyata Level/Flow and Temperature Process Rig 38-003 dengan metode Quadratic Programming. Dalam merancang pengendali MPC untuk Level/Flow and Temperature Process Rig 38-003 ini, penulis menggunakan model yang berbentuk ruang keadaan yang didapat dengan menggunakan metode Kuadrat Terkecil berdasarkan pada data masukan dan data variabel keadaan alat. Masukan sistem adalah tegangan untuk mengatur kondisi servo valve dan keluran yang akan dikendalikan adalah temperatur air hasil keluaran Heat Exchanger sebelum masuk ke sistem Radiator Cooler.
Dari uji eksperimen terbukti bahwa metode pengendali MPC dengan constraints memberikan hasil yang lebih baik dibandingkan dengan metode pengendali Ruang Keadaan. Hal tersebut dapat dilihat dari tanggapan sistem hasil pengendalian MPC dengan constraints yang lebih halus dibandingkan dengan tanggapan sistem hasil pengendalian dengan metode pengendali Ruang Keadaan. Perubahan sinyal kendali pengendali MPC dengan constraints juga jauh lebih halus dibandingkan dengan perubahan sinyal kendali pengendali Ruang Keadaan. Kondisi ini akan meningkatkan ketahanan fisik sistem selama uji eksperimen.

In conventional control system, some constraints such as amplitude and control signal?s slew rate are not included in the controlling process. So, the result of the control process is not good enough especially if the control signal is forcibly cut before entering the plant. In order to overcome this problem, a Model Predictive Controller is designed. In this MPC control scheme, the few next steps of process output are going to be predicted and some constraints will be ignored so the system output will become precise. In other hand, the occurrence of constraints will improve system?s performance into an optimum condition.
The final purpose of this thesis is to design a Model Predictive Controller (MPC) using Quadratic Programming method which will be applied on a real time system of Level/Flow and Temperature Process Rig 38-003. In designing MPC controller for Level/Flow and Temperature Process Rig 38-003, the writer uses system?s model on state space form which is obtained by using Least Square method in the basis of input and state variables data of the plant. Input for the plant is voltage which will be used to control the position of servo valve whereas the controlled output is water temperature on the pipe that connects Heat Exchanger's output line and Radiator Cooler's input line.
Experiments conducted prove that MPC with constraints controlling scheme will give a better results than State Controller controlling scheme. Generally, it can be seen that system response to MPC controller is much smoother than system response to State Controller. MPC controller also has smoother control signal variance compared to State Controller control signal variance. This condition will actually raise the system's physical reliability during the experiment.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40479
UI - Skripsi Open  Universitas Indonesia Library
cover
Camacho, Eduardo F.
"Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors"
London: Springer, 2007
629.8 CAM m
Buku Teks  Universitas Indonesia Library
cover
Mohammad Kenas Ashari
"Penggunaan komponen pasif pada sistem suspensi kendaraan mempunyai beberapa kelemahan, yaitu sistem tidak dapat menyesuaikan dengan kondisi permukaan jalan yang mengurangi kenyamanan serta keamanan dalam berkendara. Untuk mengatasi masalah tersebut dapat dilakukan dengan menambahkan komponen aktif pada sistem suspensi pasif, yang kemudian lebih dikenal dengan sistem suspensi semi-aktif. Sumber tenaga eksternal tidak diperlukan pada suspensi semi-aktif, sehingga hanya perlu mengubah damping koefisien pada damper. Dengan mengendalikan output berupa suspension deflection dari gangguan eksternal berupa kontur jalan pada model kendaraan full car diperlukan pengendali yang prediktif. Salah satu pengendali prediktif yang umum digunakan dan sudah teruji adalah Model Predictive Control (MPC). MPC digunakan untuk mengendalikan sistem suspensi semi-aktif hasil dari identifikasi sistem dengan metode identifikasi least square bertingkat. Pada laporan skripsi ini diajukan metode simulasi untuk hasil kinerja dari sistem yang akan diuji dengan menggunakan perangkat lunak MATLAB. Sedangkan untuk pengambilan data dan melihat hasil kinerja simulasi pada model kendaraan dengan menggunakan simulator Carsim.

The use of passive components in vehicle suspension systems has several disadvantages, one of them is the system cannot adjust to road surface conditions that reduce comfort and safety in driving. To overcome this problem can be done by adding active components to the passive suspension system, which is then better known as a semi-active suspension system. External power sources are not required for semi-active suspensions, so only need to change the damping coefficient on the damper. By controlling the output in the form of suspension deflection from external disturbances in the form of road contours on a full car vehicle model, a predictive controller is needed. One predictive controller that is commonly used and tested is the Model Predictive Control (MPC). MPC is used to control the semi-active suspension system as a result of identifying the system with the multistage least square identification method. In this thesis report, a simulation method is proposed for the performance results of the system to be tested using MATLAB software. Meanwhile, to data collecting and see the performance results on vehicle models using the Carsim simulator."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>