Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 154991 dokumen yang sesuai dengan query
cover
Augustinus P.
"Pembangkitan listrik hams memperhatikan pengendalian kecepatan putar turbin generator agar Iistrik yang dibangkitkan memiliki frekuensi yang stabil dan daya sinkron yang besar.
Pengendalian kecepatan putar pada turbin uap menggunakan Auromatic Generation Control (AGC) bertujuan agar response deviasi frekuensi tidak memiliki error steady-state serta mampu mengembalikan kepada kecepatan sinkronnya secepat mungkin sehingga daya sinkron sistem bertambah tinggi.
Pembahasan meliputi pemodelan sistem steam turbine-generator yang sederhana, konsep dasar Iogika fuzzy dan penerapannya sebagai pengendali. Analisis dilakukan terhadap transient stability dan steady-state strability pada sistem dengan pengendali Iogika fuzzy sebagai AGC yang mengalami gangguan (disturbance) pada beban dan tegangan. Serta unjuk kerjanya dibandingkan dengan sistem dengan pengendali PI.
Simulasi pengendali logika FLIZZY sebagai AGC dilakukan dengan bantuan perangkat lunak Simulink pada Matlab versi 5.3. Dari simulasi didapat bahwa pengendali logika Fuzzy tipe PFD sebagai AGC mampu menghilangkan error steady-state response deviasi frekuensi dengan cepat dan memiliki daya sinkron yang relatif bertambah tinggi dibandingkan pengendali PI."
Depok: Fakultas Teknik Universitas Indonesia, 2003
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andri Fitriadi
"Navigasi merupakan hal yang sangat penting dalam setiap pelayaran kapal laut, yaitu untuk mengetahui posisi kapal dalam koordinat geografis. Pengendalian pada sistem kemudi kapal laut dimaksudkan untuk melepaskan diri dan ketergantungan kemudi kapal terhadap seorang nakhoda dan kapal laut dapat tiba di tempat tujuan dengan kesalahan posisi yang tidak terlalu besar.
Pada skripsi ini akan dibahas perbandingan dua pengendali yang akan digunakan untuk mengendalikan kemudi kapal laut, yaitu pengendali logika fuzzy dan pengendali ANFIS (Adaptive-Network-Based Fuzzy Inference System). Pengendali logika fuzzy menggunakan metoda basis aturan berdasarkan pengalaman seorang pakar (dalam hal ini nakhoda) untuk mengendalikan kemudi kapal yang diambil dari acuan[2] , sementara pengendali ANFIS merupakan pengendali neuro fuzzy yang rnenggunakan proses learning dari basis data untuk menghasilkan basis aturannya. Kedua jenis pengendali ini akan menghasilkan kinerja yang berbeda."
Depok: Fakultas Teknik Universitas Indonesia, 2001
S39917
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aodah Diamah
"Fuzzy Model Reference Learning Control merupakan suatu teknik kendali yang dapat mengatasi keterbatasan pengendali fuzzy yang tidak memiliki suatu algoritma untuk mengkompensasi perubahan kondisi tau variasi yang besar dari sistem yang dikendalikannya, Fuzzy Model Reference Learning Control memiliki kemampuan untuk mengatasi adanya perubahan parameter sistem dengan menggunakan mekanisme pembelajaran. Sistem pengereman mobil merupakan sistem dengan parameter yang bervariasi, yaitu specific torque sehingga metoda Fuzzy Model Reference Learning Control diaplikasikan pada pengendali sistem ini. Pengendali menggunakan suatu model referensi pada mekanisme pembelajarannya yang merepresentasikan bagaimana suatu sistem perngereman diharapkan untuk berlaku. Hasil simulasi menunjukkan pengendali mampu memaksa sistem pengereman mobil yang dikendalikannya berlaku seperti model referensi walaupun dengan specific torque yang bervariasi."
Depok: Fakultas Teknik Universitas Indonesia, 2001
S39897
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahadian Dewantoro
"Berkembangnya teknologi kecerdasan buatan merupakan suatu hal yang berimbas pula kepada teknologi sistem kendali. Proses automatisasi industri bahkan alat-alat rumah tangga telah banyak yang menggunakannya Salah satu teknologi yang digunal-can dalam sistem kendali adalah logika fuzzy. Logika fuzzy merupakan suatu bentuk logika yang merepresentasikan cara rnanusia berpikir yang tidak pasti, penuh keraguan. Dalam peranoangan sistem kendaii dengan logika fuzzy, yang perlu dilakukan adalah mernbuat suatu sistem berdasarkan pengalaman operator selama mengoperasikan alat yang dikendalikannya. Hal ini tentu Sangat memudahkan desain suatu sistem dan outputnya akan lebih baik daripada sistem dengan pengendali klasik. Pada skripsi ini akan dibahas unjuk kerja pengendali logika firny dengan pengendali PI dengan penerapannya pada pengendalian kecepatan putar motor arus searah penguatan ter-pisah.
Motor arus scarab banyak digunakan dalam sistem kendali misalnya sebagai penggerak elevator, lift, dan tangan robot. Koniigurasi motor arus searah pada skripsi ini rnenggunakan koniigurasi tluks variabel untuk merepresentasikan kerja yang sesungguhnya dari motor arus scarab. Teknik pengendalian membutuhkan 2 parameter yang harus dikendalllcan secara bersamaan yaitu keoepatan dan arus karcna pada proses start, arus jangkar motor saugat tinggi, sehingga harus dirancang sistem kendaii yang juga rnampu mcngendaiikan arus jangicar tersebut Pada skripsi ini dapat diaualisa bagaimana pengendali PI dan logika iirzzy mampu menangani masalah tersebut."
Depok: Fakultas Teknik Universitas Indonesia, 2001
S39742
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agus Drihariyanto
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38414
UI - Skripsi Membership  Universitas Indonesia Library
cover
Budi Suwardoyo
"Anti Lock Brake Systems (ABS) bertujuan untuk menghasilkan seoptimal mungkin gaya pengereman, tetapi selama proses pengereman roda kendaraan tidak terkunci sehingga kendaraan tetap terkendali.
Pada pengendalian ABS, untuk rnendapatkan hasil yang optimal maka diperlukan pengendali yang mampu menjaga besar torsi optimum yang diperkenankan sebelum teljadjnya penguncian pada roda kendaraan. Torsi optimum yang dimaksud adalah torsi pengereman pada saat equilibrium point.
Pengendalian ini dihadapkan pada pennasalahan berubah-ubahnya kondisi jalan, yang mengakibatkan besarnya torsi pengereman yang diberikan harus disesuaikan dengan kondisi jalan. Agar dapat diberikan besar torsi pengereman yang sesuai di perlukan slip ratio sebagai pembanding antara kondisi jalan yang berbeda. Karena itu dibutuhkan sensor untuk mendeteksi kecepatan putar roda yang kemudian data dan sensor tersebut digunakan umuk memperoleh slip ratio.
Pada skripsi ini untuk membedakan kondisi pemaukaan jalan digunakan decision logic (metode elemen hingga). Metode elemen hingga membedakan kondisi permukaan jalan dengan cara membandingkan besar torsi pengereman yang diberikan dengan slip ratio yang terukur.
Keluaran dan metode elemen hingga merupakan masukan bagi pengendali logika fuzzy. Masukan berupa informasi kondisi permukaan jalan menyebabkan pengendali Iogika dapat memutuskan untuk memberikan sinyal kendali yang sesuai dengan kondisi pemiukaan jalan kepada servovalve sehingga torsi pengereman optimum dapat diberikan selama terjadinya proses pengereman.
Output dan simulasi berupa bentuk-bentuk grafik yang merupakan tanggapan slip ratio terhadap waktu, tanggapan torsi pengereman terhadap waktu, tanggapan kecepatan terhadap waktu sehingga dapat diamati tanggapan sistem secara keseluruhan."
Depok: Fakultas Teknik Universitas Indonesia, 2001
S39913
UI - Skripsi Membership  Universitas Indonesia Library
cover
Simanulang, Ridwan
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38542
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irfan Jaya
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38403
UI - Skripsi Membership  Universitas Indonesia Library
cover
Benny Benyamin
"ABSTRAK
Tesis ini membahas pengendali logika fuzzy yang digunakan untuk pengendalian proses pewarnaan benang sintetis. Model dinamika proses pewarnaan benang sintetis diturunkan berdasarkan laju penurunan berat bahan pewarna di dalam hopper dari feeder dan laju aliran bahan pewarna tersebut di dalam screw conveyor. Kemudian disimulasikan dengan bahasa Delphi versi 2.0 dari Borland.
Fungsi keanggotaan yang digunakan berbentuk segitiga dan dikelompokkan dalam tujuh kelompok.
Kaidah logika fuzzy yang digunakan pada tesis ini disusun berdasarkan kaidah logika fuzzy dari King dan Mamdani, yang terdiri dari 13 (tiga belas) aturan pengendali logika fuzzy.
Untuk melihat kinerja pengendali logika fuzzy, dilakukan dengan cara membandingkan hasil simulasi pengendali logika fuzzy dengan pengendali PID.

ABSTRACT
Application Fuzzy Logic Controller to the Control of Colouring Process of Synthetic YarnThis thesis describes fuzzy logic controller to control the coloring process of synthetic yarn. Dynamic model of the process is derived based on the loss in weight rate of the granulated coloring substance in the feeder and its flow in the screwed conveyor. The model is simulated using Borland Delphi language ver. 2.
The fuzzy logic controller uses seven fuzzy set, for input with triangular membership function. By referring to the desired step response of a second order system, and by heuristic approach it can be defined thirteen rules for the controller. The fuzzy implication is done by King's and Mamdani's fuzzy reasoning.
The performance of the fuzzy logic controller is then compared with a PID controller using simulations.
"
Depok: Fakultas Teknik Universitas Indonesia, 1997
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mochamad Rusli
Malang: Universitas Brawijaya Press, 2017
511.313 MOC d
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>