Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 91383 dokumen yang sesuai dengan query
cover
"Tenaga panasbumi merupakan salah satu energi alternatif yang dimiliki bumi Indonesia, selain tenaga air, tenaga surya, tenaga angin, dsb, uutuk menghasilkan tenaga listrik. Dalam pemanfaatannya, tenaga panasbumi yang berupa uap dapat dtgunakan langsuug untuk memutar turbin uap dan menghasilkan tenaga listrik Untuk entalpi menengah dan rendah uap panasbumi biasanya tidak langsung digunakan untuk memutar turbin, tetapi uap panashumi ilu digunakan untuk memanaskan fluida lain didalam suatu sistem alat pembuat uap (evaporator) sehingga menjadi uap dan uap fluida tersebut digunakan untuk memutar turbin. Teknologi yang terakhir ini lebih popular disebut siklus biner/siklus Rankine dengan dua fluida kerja. Alasan dipilihnya Lahendong sebagai studi kasus adalah karena ia merupakan pengembangan pertama teknologi PLTP siklus biner di Indonesia. Selain itu mengingat begitu banyaknya cadangan dan sumher energi panasbumi terbarukan (renewable resource) dan juga merupakan sumber energi yang tidak dapat dieksipor, maka sumber energi panasbumi patut dikembangkan di Indonesia sebagai sumher energi alternatif untuk pemhangkitan tenaga listrik"
Fakultas Teknik Universitas Indonesia, 2002
S39066
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ayu Setya Ismawati
"Regenerative Organic Rankine Cycle (RORC) pada siklus biner menjadi salah satu alternatif yang dapat meningkatkan performansi dan efisiensi dari siklus pada Pembangkit Listrik Tenaga Panasbumi (PLTP) yang memiliki entalpi rendah hingga menengah. Efisiensi suatu pembangkit tidak cukup hanya dilihat berdasarkan efisiensi energi (hukum I Termodinamika) saja, metode tersebut kurang mampu menggambarkan aspek-aspek penting dari pemanfaatan energi. Oleh karena itu, diperlukan kombinasi pendekatan eksergi (hukum II Termodinamika) dalam analisisnya.
Penelitian membandingkan tiga siklus biner konseptual yaitu basic ORC, RORC dan modifikasi RORC menggunakan Internal Heat Exchanger (IHE) serta menggunakan R-123 sebagai fluida kerjanya. Digunakan suatu aplikasi pemodelan sistem yang dibantu oleh software Engineering Equation Solver (EES). Hasil perhitungan termodinamika kemudian digunakan untuk mendefinisikan efisiensi energi dan eksergi pembangkit, menghitung daya netto, dan mengidentifikasikan serta menghitung besarnya degradasi eksergi yang dihasilkan.
Dari hasil perhitungan dan simulasi diperoleh RORC dengan IHE memiliki efisiensi yang lebih tinggi, baik energi maupun eksergi dan daya yang lebih besar. Siklus ini menghasilkan 18,19 % efisiensi energi, 20,49 % efisiensi eksergi, dan daya netto sebesar 596,1 kW. Kenaikan temperatur inlet turbin, penurunan tekanan kondensor, perbedaan temperatur pinch evaporator dan kondensor yang lebih kecil, serta penurunan temperatur reinjeksi menghasilkan daya netto dan efisiensi yang lebih besar.
Regenerative Organic Cycle (RORC) on binary cycle becomes one of the alternatives that can increases the performance and efficient from the cycle of Geothermal Power Plant (PLTP) which has low until average enthalpy. The efficiency of the power is not only be seen based on the energy efficiency (Thermodynamics Law I) only, that method is less able to describe the important aspects of energy utilization. Therefore, it is needed the combination of exergy approach (Thermodynamics Law II) in its analysis.
The study compared three conceptual binary cycles; basic ORC, RORC, and RORC modification using Internal Heat Exchanger (IHE) and also using R-123 as working fluid. It is used a modeling application system which is assisted by software Engineering Equation Solver (EES). The results of Thermodynamic calculations are then used to define energy efficiency and exergy power, calculate net power, and identify also quantify the resulted of exergy degradation.
From the calculation and simulation results obtained that RORC with IHE have higher efficiency, either energy or exergy and greater power. This cycle produces 18,19 % energy efficeincy, 20,49 % exergy efficiency, and net power is about 596,1 kW. The increasing of turbin inlet temperature, condencer pressure drops, the differences of pinch evaporator temperature and smaller condenser, also the descent of reinjection temperature produces net and greater efficiency.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43182
UI - Skripsi Open  Universitas Indonesia Library
cover
Nasution, Syaiful
"Energi listrik merupakan salah satu infrastruktur yang menyangkut hajat hidup orang banyak, oleh karena itu sudah seharusnya eketersediaan energi listrik terjamin dengan jumlah yang cukup dengan mutu yang baik dan harga yang wajar. Pertumbuhan perekonomian nasional menyebabkan konsumsi listrik setiap tahunnya terus meningkat. Dengan meningkatnya kebutuhan akan energi dan maraknya isu mengenai permasalahan lingkungan membuat para ahli terus mengembangkan teknologi yang tepat agar dapat mengatasi kedua masalah tersebut. Sistem PLTP siklus biner merupakan salah satu teknologi pembangkit yang sangat efektif untuk diterapkan dalam pemanfaatan energi panas bumi skala kecil enthalpy rendah sampai menengah dengan menggunakan fluida kerja yang memiliki titik didih lebih rendah daripada air, oleh karena itu maka pada tesis ini dilakukan suatu pemodelan sistem PLTP siklus biner dengan memanfaatkan waste brine dengan temperatur 180 0C pada wellpad 4 PLTP Dieng. Pemodelan dilakukan dengan menggunakan software Matlab dan REFPROP, kemudian dilakukan optimasi terhadap sistem dimana exergy destruction total dan total annual cost dipilih sebagai fungsi objektif. Adapun optimasi dilakukan dengan menggunakan multi objective genetic algorithm. Berdasarkan simulasi diketahui bahwa efesiensi exergi dan nilai ekonomis dari sistem PLTP siklus biner yang optimal adalah pada temperatur evaporasi sebesar 163,3 oC, temperatur brine keluar preheater sebesar 130 0C, temperatur air pendingin keluar kondenser sebesar 35,4 0C, tekanan kerja fluida kerja keluar pompa sebesar 3859 kPa dengan campuran refrigeran 86 R601 dan 14 R744 menghasilkan daya turbin sebesar 119,8 kW nilai exergy destruction total 742,4 kW dengan efesiensi exergy sebesar 48,8 dan total annual cost sebesar 36.723 US dollar.Kata kunci : PLTP siklus biner, efesiensi exergi, exergy destruction , cost, genetic algorithm.

Electrical energy is one of the important part of human life, so the provision of electrical energy must be able to guarantee the availability of sufficient quantity, reasonable price and good quality. Indonesia rsquo s electricity consumption every year continues to increase in line with the increase of national economic growth. The increasing demand on energy and environmental issues make the experts to develop the right technology in order to face both issues. PLTP binary cycle is a highly effective generating technology to be applied in the utilization of small scale enthalpy low to medium geothermal energy by using a working fluid that has a lower boiling point than water, hence in this thesis a PLTP binary system model was performed using waste brine with temperature of 180oC at wellpad 4 in PLTP Dieng. Modeling has been done by using Matlab and REFPROP software, then optimization procedure has been conducted to the system where total exergy destruction and total annual cost are chosen as the objective function. In addition, environmental aspects are also considered in this modeling where natural environmentally friendly working fluids are used. The optimization is done by using multi objective genetic algorithm. Based on the simulation it is known that the exergy efficiency and economic value of the optimal binary cycle of PLTP system has an optimum condition at the evaporation temperature of 163.3 oC, the brine temperature out the preheater of 130 oC, the condenser coolant outlet temperature of 35.4 oC, the outlet pump pressure at 3859 kPa with composition of refrigeran mixture 86 R601 and 14 R744, turbine power of 119.8 kW, total exergy destruction of 742.4 kW with exergy efficiency of 48.8 , and total annual cost about 36.723 US dollars. "
Depok: Fakultas Teknik Universitas Indonesia, 2017
T47652
UI - Tesis Membership  Universitas Indonesia Library
cover
Hartadhi
"Sebagian energi dalam proses industri hilang sebagai panas buang ke atmosfer atau sistem pendinginan, tidak terkecuali pada sistem PLTP. PLTP Lahendong memiliki panas buang berupa fluida yang akan diinjeksi kembali brine ke dalam sumur dengan temperatur 170oC. Panas pada brine ini dapat dimanfaatkan kembali menjadi listrik dengan alternatif pemanfaatan menggunakan siklus Rankine organik, Kalina, CO2 superkritis dan generator thermo-elektrik. Dengan pertimbangan efisiensi, biaya, dan pengalaman industri, maka penelitian ini akan membandingkan dua alternatif, siklus Rankine organik SRO dan siklus Kalina dalam hal potensi daya listrik, reduksi emisi, dan keekonomian berdasarkan regulasi yang berlaku, serta mengidentifikasi faktor-faktor yang paling berpengaruh pada keekonomian kedua sistem tersebut dengan analisis sensitivitas.
Simulasi penerapan siklus Rankine organik dan siklus Kalina dengan perangkat lunak Engineering Equation Solver EES menunjukkan bahwa dengan IRR 15,2 , NPV 1.253.600 dan periode pengembalian 7,3 tahun, siklus Rankine organik dengan konstruksi sederhana dapat menghasilkan daya bersih sebesar 655kW. Siklus Kalina dengan konstruksi lebih kompleks menghasilkan daya bersih yang lebih besar yaitu 785kW ternyata tidak mampu memberikan performa ekonomi yang lebih baik dengan IRR 10,2 ; NPV sebesar 42.285 dan periode pengembalian selama 13 tahun. Dengan keunggulan yang dimiliki siklus Rankine organik, dan dengan banyaknya pengalaman industri komersial negara lain dalam penerapan sistem ini, maka sistem ini dinilai optimal dan layak untuk diterapkan pada pemanfaatan brine PLTP Lahendong maupun industri lain dengan kondisi panas buang dan tarif yang serupa.

Some energy in industrial processes is lost as waste heat to the atmosphere or cooling system. Geothermal power generation is no exception. PLTP Lahendong produce waste heat in the form of brine with temperature of 170oC which will be reinjected into reinjection well. The heat of this brine can be recovered for direct use or by converting heat into electricity. Some waste heat to power WHP technologies include organic Rankine cycle, Kalina cycle, supercritical CO2 and thermoelectric generator. With several considerations such as efficiency, cost and industrial experience, this research will compare only two alternatives which are Organic Rankine Cycle ORC and Kalina cycle in terms of power, emission nreduction potential and economic feasibility based on applicable regulation, as well as identifying factors which affect economic feasibility of those system by means of sensitivity analysis.
Application simulation of organic Rankine cycle and Kalina cycle with Engineering Equation Solver EES software showed that with 15.2 IRR, 1,253,600 NPV and return period of 7.3 years, organic Rankine cycle can produce 655kW net power. Kalina cycle, despite with greater net power of 785kW, was not able to provide better economic performance with 10.2 IRR 42,285 NPV and return period of 13 years. With the advantages of the organic Rankine cycle, and with many commercial industry experience in other countries in the application of this system, this system is considered optimal and feasible for brine utilization in Lahendong geothermal power plant or other industries with similar heat and tariff.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T48210
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
Mohammad Dicky Amrullah
"Indonesia merupakan salah satu negara yang memiliki jumlah gunung berapi terbanyak di dunia, bahkan potensi energi panas bumi Indonesia merupakan yang terbesar di dunia. Mengacu pada data dari Kementerian Energi dan Sumber Daya Mineral RI, kapasitas terpasang pembangkit listrik tenaga panas bumi (PLTP) belum maksimal yaitu sebesar 1.405,4 MW atau 1,1% dari bauran penggunaan energi nasional. Pada Program 35.000 MW yang dicanangkan oleh pemerintah pada tahun 2015, pembangkit listrik berbasis energi baru terbarukan (EBT) diberikan porsi sebesar 25%. Pembangkit listrik tenaga panas bumi (PLTP) yang merupakan pembangkit listrik berbasis energi baru dan terbarukan (EBT) mulai dianggap sebagai salah satu solusi ketenagalistrikan nasional. Namun, pembangkit listrik tenaga panas bumi (PLTP) dapat menyebabkan permasalahan lingkungan apabila tidak dioperasikan dengan benar. Untuk mencegah resiko seperti itu, manajemen aset yang baik menjadi suatu kebutuhan.
Metode penilaian reliability adalah salah satu metode manajemen aset yang umum digunakan pada industri pembangkit listrik. Dengan mengetahui nilai reliability suatu aset, strategi maintenance dapat disusun secara efektif. Objek perhitungan reliability pada penelitian ini adalah power generation system PLTP Unit 4 Kamojang. Untuk mengetahui nilai reliability dari plant, analisis reliability block diagram (RBD) perlu dilakukan. Setiap diagram blok pada RBD dibagi berdasarkan sistem maupun equipment yang terdapat pada PLTP yaitu steam supply system, main cooling water system, gas extraction system, auxiliary cooling water system, dan closed cooling system. Formula perhitungan dari RBD diterapkan pada tabel kalkulasi reliability, sehingga perhitungan dapat dilakukan dengan efisien dan gangguan yang terjadi pada sistem dapat dilihat pada tabel kalkulasi reliability. Performa reliability dan availability PLTP Unit 4 Kamojang pada tahun 2015 tergolong baik dimana masing-masing mencapai nilai 99% dan 91%.

Indonesia is considered as a world major volcanic country and was gifted with the great geothermal energy resources. Despite having a big potential, according to data from the Ministry of Energy and Mineral Resources, the installed capacity for geothermal power plant is just in the amount of 1405.4 MW, or just 1.1 % of national energy use. As the 35,000 MW Project which were announced by the government in 2015 goes on, the portion of renewable energy-based electricity generation amounted to 25%, geothermal power plant (PLTP), which is renewable energy ? based power plant is considered as a solution for the national electricity industry. However, geothermal power plant (PLTP) can also cause an environmental problem if it isn't operated properly. To prevent major risks like that, a good asset management is needed.
One of asset management method is making a reliability assessment. By knowing the reliability value of asset, maintenance strategies can be programmed effectively. A reliability assessment is applicated on Unit 4 Kamojang Geothermal Power Plant. To determine the reliability value of plant, an analysis of reliability block diagram (RBD) is needed. Each block diagram, divided by the components of the systems in geothermal power plant. They are steam supply system, main cooling water system, gas extraction system, auxiliary cooling water system, and closed cooling system. RBD philosophy should be applied to the reliability calculation table, so that the calculation can be done efficiently and the disturbance on the system can be seen in reliability calculation table. Reliability and availability performance of geothermal power plants in 2015 can be said good. Each of them reach a value of 99% and 91%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65806
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sitorus, Ramli Parulian
Depok: Fakultas Teknik Universitas Indonesia, 1994
S38624
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Perpanjangan waktu operasi (Life Service Extension/ LSE) PLTP Lahendong 1 x 20 MW yaitu karena adanya event¬event penting. Dan apabita pasokan listrik dikurangi 20 MW karena mesin pembangkit harus dioverhaul, maka akan terjadi pemadaman listrik diwilayah PT. PLN (PERSERO) SULUTTENGGO. Yang dimaksud dengan event-event penting an tara lain: pemilu, puasa, natal dan tahun baru. PLTP Lahendong unit 1 kapasitas 20 MW dioperasikan secara komersial sejak 21 Agustus 2001. Telah berhasil dilakukan Life Service Extension sekitar 21,25 bulan atau 15.232 jam, yang memberikan nitai tambah berupa pendapatan dan reputasi baik bagi perusafX1an. PT. PLN (PERSERO) LlTBANG sebagai pelaksana LSE didalam Predictive Maintenance / Pd.M bekerjasama dengan PLN Sektor Minahasa. Disepakati bahwa metode yang digunakan adalah pemantauan parameter antara lain: Vibrasi, Tribology, NDT, Steam Purity dan Heat Rate pembangkit. Pemantauan parameter ditakukan secara bertahap dengan interval waktu 3 bulan. Dan selanjutnya data hasit pantauan dibuat analysis kecenderungan/trending, statistik data dan dilakukan kajian. Dari hasit kajian secara bertahap, diberikan rekomendasi secara bertahap pula. Isi rekomendasi yaitu bahwa PL TP Lahendong unit 1 aman untuk diperpanjang masa beroperasinya. Melalui 4 tahapan rekomendasi LSE maka dapat dicapai total waktu sekitar 15.232 jam operasi yang seperti telah disebutkan di atas. Sebagai informasi tambahan program LSE-Pd.M sedang ditakukan pada PLTU 400 MW 1 Suralaya."
537 JIEK 1:1 (2008)
Artikel Jurnal  Universitas Indonesia Library
cover
Harun Al Rosyid
"Dengan menimbang banyaknya PLTU yang dibangun, dioperasikan di Indonesia dan kapasitasnya lebih dari 15GW. Kapasitas ini akan menjadi dua kali lipat dalam lima tahun yang akan datang sesuai dengan program pemerintah Indonesia dalam pembangunan pembangkit listrik. Namun unjuk kerja dari PLTU yang terpasang tersebut mempunyai efisiensi yang rendah. Hal ini terjadi karena banyaknya kalor yang keluar dari siklus dan dibuang ke lingkungan termasuk kalor yang dibuang ke sistim air pendingin berupa limbah air panas dan dibuang lewat kondenser. Limbah termal ini dapat dimanfaatkan sebagai energi yang potensial menjadi tenaga listrik dengan pemasangan siklus biner. Tujuan penelitian ini adalah untuk mengadakan analisis peningkatan unjuk kerja pembangkit dengan pemasangan siklus biner pada siklus bawah PLTU, dari hasil konversi limbah kalor PLTU menjadi tenaga listrik tambahan, analisis ini menggunakan analisis termodinamika, yakni dengan analisis exergi.
Dalam analisis exergi siklus biner ini, dibuat simulasi beberapa alternatip konfigurasi siklus biner dengan menggunakan perangkat lunak Tempo cycle-TU Delft untuk siklus binernya dan verifikasi awal siklus PLTU 100 MW yang terpasang sebagai acuan input siklus biner PLTU, digunakan perangkat lunak Gate cycle-USA. Selanjutnya untuk membuktikan bahwa siklus ini layak dalam semua aspek baik teknis dan ekonomin, maka di adakan analisis keuangan, untuk itu digunakan perangkat lunak analisis keuangan Proforma yang umum digunakan pihak perbankan, dan diadakan analisis sensitivitas teknoekonomi.
Dalam penelitian analisis exergi ini menunjukkan bahwa dengan pemasangan siklus biner dua tingkat tekanan pada PLTU, daya keluaran netto pembangkit akan meningkat menjadi sebesar 120.9 MW dibanding keluaran PLTU semula 102.4MW atau meningkat lebih dari 11%, dan efisiensi exerginya naik menjadi 34,9% dibandingkan dengan PLTU semula hanya 31.6% atau meningkat lebih dari 10 %. Peningkatan unjuk kerja ini merupakan hasil konversi limbah limbah kalor PLTU menjadi tambahan daya, hal ini dapat ditunjukkan dari energi limbah kalor pembangkit yang menurun menjadi hanya 109,5 MW dibandingkan dengan limbah kalor PLTU semula 183,7 MW atau turun 40%. Biaya produksi listrik yang lebih murah dari harga yang disetujui pemerintah yakni pemasangan siklus biner pada PLTU eksisting dimana tarifnya hanya 0.0344 US$/kwh atau 36% lebih murah dari tarif yang ditetapkan pemerintah. Hasil analisis keseluruhan dalam disertasi ini menunjukkan bahwa pemasangan siklus biner pada PLTU adalah layak secara tekno ekonomi.

Considering that there are many Steam power plants (SPP?s) that have been built and operated in Indonesia which have more than 15 GW. It will be double in the next five years as acceleration program by government of Indonesia (GOI) to build new power generating plants to cover national electricity demand. However unfortunately the performance of conventional SPP?s especially the ones that have been built in Indonesia has low efficiency. This happens because there is a lot amount of heat wasted out of the cycle and emitted to the environment including the heat emitted to the cooling water system and discharges as hot water trough the condenser. This thermal waste is a potential energy that can be utilized to electricity by installing binary cycle.
In this research an exergy analysis of various bottoming binary cycles will be analyzed which can improve the steam power plant cycle performance. In studying the SPP bottoming binary cycle will created simulation of several configurations using Tempo cycle-TU Delft software for the binary cycle and to verify the steam cycle Gate cycle-USA software will be used. In addition to confirm that the cycle is feasible in all aspects both technically and economically, then some sort of technoeconomic analysis would be studied. The technoeconomic analysis of Bottoming binary cycle is calculated and analyzed by using both Cycle tempo-TU Delft software and well known Pro forma financial analysis.
The results of technoeconomic analysis in this research has been proves that by installing bottoming binary cycle plant to the existing SPP is feasible in both thermodynamically and economically. It will reduce plant termal waste down to 23%, increase the performance of conventional SPP that includes increasing gross power output up to 11%, improving plant efficiency by almost 10%, the lower electricity tariff and cheaper than GOI acceptance price level.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
D904
UI - Disertasi Open  Universitas Indonesia Library
cover
Benny Dwi Kristanto
Depok: Fakultas Teknik Universitas Indonesia, 1991
S37984
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>