Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 59586 dokumen yang sesuai dengan query
cover
Fakultas Teknik Universitas Indonesia, 2001
S39102
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ronny Wicaksono
"The feed forward neural network (FFANN) model has been the most popular form of artificial neural network model used for forecasting, particularly in economics and finance. In this paper, we elucidate the application of FFANN as a means of modeling financial data. We particularly focus on the model building of FFANN as time series model and use inflation rates in Indonesia as a case study. A comparison is drawn between FFANN model and the best existing models based on traditional econometrics time series approach. The best models are selected on forecasting ability by using the MSE, particularly on the dynamic forecast. The results show that FFANN models outperform the traditional econometric time series model."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2006
T18415
UI - Tesis Membership  Universitas Indonesia Library
cover
Achmad Dimyati
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38484
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ikhwan Martias
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38438
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lin, Chin-Teng
New Jersey:: Prentice-Hall, 1996
629.89 LIN n
Buku Teks  Universitas Indonesia Library
cover
Ratna Aditya Apsari
"

Meningkatnya angka prevalensi gangguan depresi, terutama di generasi muda, membawa urgensi tentang pentingnya menjaga kesehatan mental. Terlebih lagi, adanya gangguan depresi pada seseorang telah terbukti untuk meningkatkan risiko dan keparahan (severity) penyakit kardiovaskular. Seringkali, depresi luput atau salah didiagnosis sebagai penyakit lain, karena gejala-gejalanya yang mirip dengan penyakit non-mental lainnya. Karena itu, kebutuhan untuk membuat suatu sistem berbasis sinyal elektroensefalografi (EEG) yang dapat membantu diagnosis gangguan mental ini menjadi semakin penting. Tujuan penelitian ini adalah membuat program analisis spektral dan klasifikasi sinyal EEG untuk membantu diagnosis gangguan depresi yang berbasis Machine Learning. Untuk melengkapinya, dibuat juga aplikasi MATLAB dengan Graphical User Interface agar mempermudah pengguna. Sinyal EEG diproses menggunakan dua metode, yaitu wavelet dan Power Spectral Density (PSD). Relative Power Ratio dan Average Alpha Asymmetry dihitung sebagai fitur klasifikasi. Untuk mereduksi jumlah fitur, dilakukan perhitungan dominansi. Fitur akan diurutkan sesuai dominansinya, sehingga fitur dengan dominansi tertinggi akan digunakan untuk klasifikasi Machine Learning. Pengklasifikasi yang digunakan adalah feedforward neural network dengan cross validation. Hasil akurasi tertinggi yang dicapai adalah 83,6% menggunakan metode wavelet dan 77,5% menggunakan metode PSD. Selain itu, di bagian Frontal dan Parietal subyek depresi, ditemukan aktivitas alfa bagian otak kanan yang lebih dominan. Hal tersebut konsisten dengan penemuan dari riset-riset sebelumnya yang menunjukkan bahwa subyek depresi memiliki asimetri aktivitas otak yang dominan di bagian kanan.


The increasing prevalence of depressive disorder (also known as major depressive disorder or MDD), especially in the younger generations, has brought urgency upon the importance of keeping good mental health. Moreover, depression has proven to increase risks of cardiovascular diseases, along with their severities. Depressive disorders are oftentimes not diagnosed or misdiagnosed, because some of the symptoms are similar with those of other non-mental illnesses. Because of that, the necessity to build a system based on electroencephalographic (EEG) signals that could help diagnose this mental illness has been increasing in importance. The goal of this research is to make a Machine Learning-based classification program that implements EEG spectral analysis to aid for the diagnostics of depression. A MATLAB application with a Graphical User Interface was made as an addition to the program so that users can operate it easily. EEG signals were processed using two different signal processing methods, which are wavelet and Power Spectral Density (PSD). Relative Power Ratio and Average Alpha Asymmetry were calculated for feature extraction. As a feature-reducing method, feature dominance was calculated and ranked so that the highest ranked features will be used as input for the Machine Learning classification. The classifier used was feedforward neural network with cross validation. The highest achieved results were 83,6% accuracy using the wavelet method and 77,5% accuracy using the PSD method. Other than that, depressed subjects also showed a dominant right-hemisphere alpha activity in the Frontal and Parietal region, which is consistent with previous research that reveals the right-dominated asymmetry in the depressed brain.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siauw, Luke
"Perkembangan bare dalam neural network telah memberikan keuntungan-keuntungan dalam aplikasi sistem kontrol. Berdasarkan teori stale space dan pendekatan neural network, dikembangkan suatu algoritma yang disebut Stochastic Neural Direct Adaptive Control (SNDAC) untuk mengendalikan plant yang diketahui sebagian matriks sistemnya, yaitu matdks masukan B(.) dan matriks keluaran C(.). Pengendali neural network menggunakan algoritma SNDAC untuk mengubah bobot-bobotnya sehingga dihasilkan sinyal kendali yang mengoptimalkan quadratic performance index. Parameter yang berpengaruh pada pengendalian adalah banyaknya neuron pada lapisan tersembunyi dan besarnya koefisien belajar. Pemilihan banyaknya neuron pada lapisan tersembunyi dan besarnya koefisien belajar tidak dapat dilakukan secara eksak, tetapi dengan trial and error. Dengan pemilihan yang tepat dihasilkan pengendalian yang stabil dengan toleransi kesalahan yang kecil, seperti terlihat pada hasiI simulasi."
Depok: Universitas Indonesia, 1997
S38826
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pratama Mahadika
"ABSTRAK
Dalam banyak kendaraan modern, faktor keamanan menjadi pertimbangan penting dalam mendesain kendaraan. Sebagai salah satu bagian dari Advanced Driver Assistant Systems (ADAS) yang diperuntukkan untuk meningkatkan keamanan dalam berkendara, Adaptive Cruise Control (ACC) diperkenalkan untuk mengurangi kemungkinan terjadinya kecelakaan lalu lintas. Sistem pada ACC
dapat membantu pengendara dalam menjaga jarak aman dengan kendaraan yang berada di depannya dengan mengendalikan besaran pada katup gas serta tekanan pada rem. Selain untuk meningkatkan faktor keamanan, sistem ACC harus mampu memberikan respon yang halus agar pengendara tetap merasa nyaman. Pada penelitian ini, sistem ACC akan didesain dengan memanfaatkan metode switching
yang memiliki respon yang halus dengan memanfaatkan kecepatan relatif, jarak antar kendaraan, dan percepataan kendaraan untuk menentukan kondisi follow mode ketika terdapat kendaraan di depannya, dan kondisi cruise mode ketika tidak terdapat halangan. Kemudian dalam mengendalikan kecepatan kendaraan, akan memanfaatkan pengendali Neural Network Predictive Control (NNPC) yang mengatur besaran katup gas dan tekanan rem yang diberikan. Metode NNPC akan memanfaatkan model Artificial Neural Network (ANN) dalam melakukan identifikasi model longitudinal kendaraan yang sangat tidak linier, dan menggabungkan dengan metode Model Predictive Control (MPC) untuk melakukan prediksi keadaan dari kendaraan yang dikendalikan. Hasil dari penelitian memperlihatkan bahwa pengendali NNPC serta algoritma switching yang digunakan mampu menjaga jarak dengan kendaraan yang ada di depannya, serta memiliki respon yang cukup halus.

ABSTRACT
In many modern vehicles, safety is an important consideration in designing a vehicle. As one part of the Advanced Driver Assistant Systems (ADAS) which is intended to improve safety in driving, Adaptive Cruise Control (ACC) is introduced to reduce the possibility of traffic accidents. The ACC system can help the driver maintain a safe distance from the vehicle in front of him by controlling the throttle and the pressure on the brakes. In addition to increasing the safety factor, the ACC system must be able to provide a smooth response so that the driver feels comfortable. In this study, the ACC system will be designed by using a switching method that has a smooth response by utilizing the relative speed, distance between vehicles, and vehicle acceleration to determine the condition of follow mode when there is a vehicle in front of it, and the cruise mode condition when there are no obstacles. Then in controlling vehicle speed, Neural Network Predictive Control
(NNPC) controllers will control the amount of throttle and brake pressure applied. The NNPC method will utilize the Artificial Neural Network (ANN) model to identify longitudinal models of vehicles that are highly non-linear, and combine them with the Model Predictive Control (MPC) method to predict the state of the controlled vehicle. The results of the study show that the NNPC controller and switching algorithm used are able to maintain a distance from the vehicle in front
of it, and have a fairly smooth response."
Depok: Fakultas Teknik Universitas Indonesia , 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
New York: McGraw-Hill, 1996
006.32 FUZ
Buku Teks  Universitas Indonesia Library
cover
Janu Dewandaru
Depok: Fakultas Teknik Universitas Indonesia, 1993
S38366
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>