Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 183645 dokumen yang sesuai dengan query
cover
cover
Zuryati Djafar
"Modul termoelektrik sebagai sebuah peralatan yang dapat mengubah energi listrik menjadi sebuah gradien temperatur atau sebaliknya dengan adanya gradien (perbedaan) temperatur, dapat mengubah energi panas (kalor) menjadi energi listrik. Sebagai sistem temoelektrik generator, elemen ini tidak berisik, perawatannya mudah, dimensi relatif kecil, ringan dan ramah terhadap lingkungan karena tidak menghasilkan polusi. Karena melimpahnya panas buangan dari pabrik, rumah tangga, perangkat elektronik dan iradiasi matahari yang ada, modul termoelektrik akan menjadi solusi teknologi alternatif yang murah dan ramah lingkungan bila digunakan sebagai sebuah generator (pembangkit daya) penghasil listrik dengan memanfaatkan panas buangan tersebut.
Penelitian ini dilakukan dengan metode eksperimen. Eksperimen yang telah dilakukan dengan menguji karakteristik modul termoelektrik pada 3 sumber kalor yang berbeda, yaitu: dengan menggunakan sumber kalor fluida (air) panas, sumber panas radiasi matahari dan sumber panas bohlam halogen.
Dari penelitian yang telah dilakukan diperoleh beberapa hasil antara lain; Karakterisasi modul TE pada sumber fluida panas menunjukkan bahwa dengan kenaikan temperatur fluida panas 5°C terjadi peningkatan beda tegangan berkisar sebesar 100 mV dan daya maksimum rata-rata dicapai sekitar 15 mW; dengan penggunaan heat pipe membangkitkan daya yang jauh lebih besar 4-5 kali pada modul TE tunggal (1.04 mW) dari modul TE tunggal tanpa heat pipe (0.15 mW), dan pada modul TE ganda yang menggunakan heat pipe menjadi 4 kali lebih besar (1.48mW) dari modul TE ganda yang tanpa heat pipe ( 0.37mW); diperoleh sebuah persamaan penentuan koefisien Seebeck untuk modul terkoneksi dimana adalah koefisien Seebeck hasil koneksi, adalah koefisien Seebeck tunggal.

Thermoelectric module as a device that can convert electrical energy into a temperature gradient or vice versa with the gradient temperature, can change the heat energy into electricity. As a thermoelectric generator system, this element is not noisy, easy maintenance, relatively small dimensions, light weight and environmentally friendly because it does not produce pollution. Because of the abundance of waste heat from factories, household, electronic devices and existing solar irradiation, thermoelectric modules would be a cheap alternative technology solutions and environmentally friendly when used as a generator producing electricity by utilizing the waste heat.
This research was conducted with the experimental method. Experiments have been done by testing the characteristics of thermoelectric modules in 3 different heat sources, namely: using heat of hot water, heat of the solar radiation and heat of halogen bulb.
From the research that has been done shows some results, among others; Characterization of the TE module to the heat source fluid showed that different temperature of the hot fluid about 5°C will increase voltage range of 100 mV and a maximum average power is achieved of about 15 mW; by the use of heat pipe evokes a far greater power 4-5 times in a single TE module on (1.04 mW) than that a single TE module without heat pipes on (0.15 mW), and the double TE modules using heat pipes 4 times greater (1.48mW) of double TE modules without heat pipes (0.37mW); was obtained an equation for the Seebeck coefficient determination module connected Įk = C1/C2 Įt where Įk is the Seebeck coefficient results of the connection, the Seebeck coefficient Įt of single TE modules.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
D1947
UI - Disertasi Membership  Universitas Indonesia Library
cover
Rizal Ibnu Wahid
"ABSTRAK
Ketersediaan air merupakan hal penting dalam suatu kehidupan. 97 air di bumi merupakan air laut. Namun air laut masih memiliki kandungan TDS Total Dissolved Solid dan salinitas yang cukup tinggi sehingga tidak layak pakai. Untuk mendesalinasi air laut harus menaikkan temperature air laut sampai kondisi di atas temperature saturasinya. Hal ini dapat ditanggulangi dengan memanfaatkan limbah panas buangan kondenser pembangkit listrik yang di buang ke laut. Dengan menggunakan teknologi throttling process pada sea water condenser, kita dapat menghasilkan air layak pakai. potensi produksi air layak pakai dalam pemanfaatan limbah panas buangan sea water kondenser dapat mencapai 1,8 kg/s per kg air panas yang masuk ke kondenser. Pada penulisan kali ini akan membahas tentang cara memanfaatkan limbah panas buangan sea water kondenser sehingga dapat memproduksi air layak pakai.

ABSTRACT
The availability of water is an important thing in a life. 97 of the water in the earth is sea water. But sea water still has TDS Total Dissolved Solid and salinity is high enough so not worth using. To desalinate sea water should raise the temperature of sea water until the conditions above the saturasi temperature. This can be overcome by utilizing waste heat from water cooling sea water kondenser power plant which discharged into the sea. By using throttling process technology at sea water condenser, we can produce water worthy of usable. The potential for production of water worth using in the utilization of waste heat from outter sea water kondenser can reach 1.8 kg s per kg of hot water into the condenser. At this writing will discuss about how to utilizing waste heat from outter water cooling sea water condenser, so that it can produce water worth use."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hartadhi
"Sebagian energi dalam proses industri hilang sebagai panas buang ke atmosfer atau sistem pendinginan, tidak terkecuali pada sistem PLTP. PLTP Lahendong memiliki panas buang berupa fluida yang akan diinjeksi kembali brine ke dalam sumur dengan temperatur 170oC. Panas pada brine ini dapat dimanfaatkan kembali menjadi listrik dengan alternatif pemanfaatan menggunakan siklus Rankine organik, Kalina, CO2 superkritis dan generator thermo-elektrik. Dengan pertimbangan efisiensi, biaya, dan pengalaman industri, maka penelitian ini akan membandingkan dua alternatif, siklus Rankine organik SRO dan siklus Kalina dalam hal potensi daya listrik, reduksi emisi, dan keekonomian berdasarkan regulasi yang berlaku, serta mengidentifikasi faktor-faktor yang paling berpengaruh pada keekonomian kedua sistem tersebut dengan analisis sensitivitas.
Simulasi penerapan siklus Rankine organik dan siklus Kalina dengan perangkat lunak Engineering Equation Solver EES menunjukkan bahwa dengan IRR 15,2 , NPV 1.253.600 dan periode pengembalian 7,3 tahun, siklus Rankine organik dengan konstruksi sederhana dapat menghasilkan daya bersih sebesar 655kW. Siklus Kalina dengan konstruksi lebih kompleks menghasilkan daya bersih yang lebih besar yaitu 785kW ternyata tidak mampu memberikan performa ekonomi yang lebih baik dengan IRR 10,2 ; NPV sebesar 42.285 dan periode pengembalian selama 13 tahun. Dengan keunggulan yang dimiliki siklus Rankine organik, dan dengan banyaknya pengalaman industri komersial negara lain dalam penerapan sistem ini, maka sistem ini dinilai optimal dan layak untuk diterapkan pada pemanfaatan brine PLTP Lahendong maupun industri lain dengan kondisi panas buang dan tarif yang serupa.

Some energy in industrial processes is lost as waste heat to the atmosphere or cooling system. Geothermal power generation is no exception. PLTP Lahendong produce waste heat in the form of brine with temperature of 170oC which will be reinjected into reinjection well. The heat of this brine can be recovered for direct use or by converting heat into electricity. Some waste heat to power WHP technologies include organic Rankine cycle, Kalina cycle, supercritical CO2 and thermoelectric generator. With several considerations such as efficiency, cost and industrial experience, this research will compare only two alternatives which are Organic Rankine Cycle ORC and Kalina cycle in terms of power, emission nreduction potential and economic feasibility based on applicable regulation, as well as identifying factors which affect economic feasibility of those system by means of sensitivity analysis.
Application simulation of organic Rankine cycle and Kalina cycle with Engineering Equation Solver EES software showed that with 15.2 IRR, 1,253,600 NPV and return period of 7.3 years, organic Rankine cycle can produce 655kW net power. Kalina cycle, despite with greater net power of 785kW, was not able to provide better economic performance with 10.2 IRR 42,285 NPV and return period of 13 years. With the advantages of the organic Rankine cycle, and with many commercial industry experience in other countries in the application of this system, this system is considered optimal and feasible for brine utilization in Lahendong geothermal power plant or other industries with similar heat and tariff.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T48210
UI - Tesis Membership  Universitas Indonesia Library
cover
Ponky Ludi Kardono
Depok: Fakultas Teknik Universitas Indonesia, 1992
S48679
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1993
S48716
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1998
S49044
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fauzan Widianto
"ABSTRACT
Sudden changes in extreme pressure can change the phase and temperature of a fluid according to the temperature and saturation pressure diagram. This is applied using the Throttling Process in the PLTU. The purpose of this research is to conserve energy by simulating the calculation of thermal efficiency of the PLTU by adding a throttling process in it. In this simulation, the varied variables are the percentage of water discharged into the sea and the temperature difference in the condenser. This simulation is also supported by experiments conducted by the author by creating a system that describes the situation of the simulation. Based on the simulation results, the use of the throttling process can produce distilled water of 0.0178 kg/s, and increase turbine efficiency by 0.16%. These results were obtained by reducing the pressure on the condenser from 8.45 kPa to 6.45 kPa, as well as other modifications.

ABSTRAK
Perubahan tekanan ekstrem secara mendadak dapat merubah fasa dan temperature daripada suatu fluid sesuai dengan diagram suhu dan tekanan saturasi. Hal ini diaplikasikan menggunakan Throttling Process pada PLTU. Tujuan dari penelitian ini adalah untuk konservasi energi dengan melakukan simulasi perhitungan efisiensi thermal PLTU dengan modifikasi menambahkan throttling process didalamnya. Pada simulasi ini variable yang divariasikan adalah persentase air yang dibuang ke laut dan perbedaan temperature di dalam condenser. Simulasi ini juga didukung oleh experiment yang dilakukan oleh penulis dengan membuat sistem yang menggambarkan situasi dari simulasi tersebut. Berdasarkan hasil simulasi, penggunaan dari throttling process dapat menghasilkan akuades sebesar 0.0178 kg/s, dan meningkatkan efisiensi turbine sebesar 0.16%. Hasil tersebut didapatkan dengan mengurangi tekanan pada condenser dari 8.45 kPa ke 6.45 kPa, serta modifikasi lainya.
"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nanang Hermawan
Fakultas Teknik Universitas Indonesia, 1999
S50854
UI - Skripsi Membership  Universitas Indonesia Library
cover
<<   1 2 3 4 5 6 7 8 9 10   >>