Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 69642 dokumen yang sesuai dengan query
cover
Maung, Aye Myint
"Dalam peroncangan sebuah robot, sistem kinematika cukup penting. Bentuk struktur yang dipiIih harus dqnat memberikan suatu korgfigurasi gerakan yang efektif. sendi-sendi pada manipulator harus drpilih sesuai dengan keperluan aplikasi yang dituju. Dalam analisis kinematika, selain memiliki sudut-sudut untuk tiap sendi yang akhirnya dapat membertkan informasi mengenai posisi serta orientasi dari end-effector, dapat dicari sudut-sudut sendi dari posisi serta orientasi end-efector yang sudah iketahui. Berdasarkan data-data ini serta parameter-parameter kinematika dapat merencanakan suatu lintasan dengan jumlah sudut gerak terkecil dari lintasan-lintasan yang mungkin.
Dengan representasi Denavit-Hartenberg dapat dinyatakan secara sistematis sistem koordinat untuk tiap sendi dalam rantai sehingga tranformasi koordinat end-effector ataupun tranformasi titik-titik pada tiap link terhadqp sistem koordinat referensi dengan mudah didapatkan. Setelah itu, dengan menggunakan metode pendekatan geometris, dapat dihitung sudut-sudut gerak untuk tiap sendi bisa diketahui posisi serta orientasi dari end-effector yang ingin dicapai. Perhitungan inverse kinematics ini dapat menghasilkan solusi yang lebih dari satu. Untuk memilih solusi yang paling tepat, selain dilihat dari struktur robot itu sendiri perlu juga digunakan intuisi serta pengalaman perancang. Perencanaan lintasan dapat dilakukan baik pada bidang polinomial (sudut sendi ataupun pada bidang kartesian.
Dalam skripsi ini perencanaan lintasan gerakan menggunakan fungsi polynomial derajat tiga. Metode ini paling mudah. Dengan metode ini dapat ditentukan profil sudut gerak untuk tiap sendt, tetapi tidak dapat ditentukan koordinat titik lintason serta bentuk lintasannya. Lintasan gerakan dari sebuah mampulator bisa lebih dari mtv. Lintasan dengan sudut gerak paling kecil dipilih berdasarkan pada sudut gerak tiga sendi pertama. Perhitungan-perhitungan pada analisis kinematika ini dibuat program dengan menggunakan bahasa pemrograman C. Pemrograman ini ditujukan untuk mempermudah dalam perhitungan yang melibatkan enam sumbu serta matriks."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S36611
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gandjar Kiswanto
"ABSTRAK
Penelitian ini berisi mengenai desain prototipe robot jenis artikulasi dengan enam derajat kebebasan. Kegiatan desain diawali dengan menentukan spesifikasi awal robot. Berdasarkan spesifikasi awal dilakukan perhitungan untuk menentukan percepatan, gaya, dan torsi. Percepatan dihitung dengan menggunakan metode grafis dengan maksud untuk mempermudah perhitungan. Berdasarkan percepatan tersebut, berdasarkan Hukum II Newton didapat gaya-gaya yang bekerja di titik berat lengan. Dari gaya dan jarak antara titik berat lengan dengan sendi akan didapatkan torsi untuk menyeimbangkan lengan. Daya motor untuk menggerakkan sendi didapat dengan mengalikan torsi dengan kecepatan sudut sendi. Perhitungan dilakukan pada kondisi kerja maksimum yaitu saat bekerja dengan kecepatan maksimum dan lengan momen terpanjang.
Hasil perhitungan digunakan untuk menentukan dimensi struktur. komponen -komponen struktur yang diperhitungkan adalah yang dianggap kritis, yaitu apabila ia gagal, maka dapat mengakibatkan kegagalan bagi keseluruhan struktur. Kriteria yang digunakan dalam perhitungan adalah kriteria kuat dan kaku.
Lintasan pergerakan (trajectory planning) lengan robot direncanakan merupakan lintasan pergerakan point to point sehingga dalam perhitungan lintasan digunakan cara perhitungan lintasan sudut untuk setiap sendi. Perhitungan aspek inverse kinematics menggunakan metode analitis dengan melakukan empatkonfgurasi yang dianggap cocok untuk struktur manipulator, diantaranya left & above arm, left & below arm, right & above arm serta right & below arm.
Tinjauan dinamika pergerakan lengan robot dilakukan pada struktur manipulator dengan menggunakan substitusi variabel bebas berupa polinom berderajat tiga. Substitusi ini kemudian diterapkan dalam perhitungan trajectory planning menggunakan rumus-rumus rekursif persamaan Newton-Euler. Hasil perhitungan diperoleh besarnya gaya dan momen torsi yang dibutuhkan dalam pergerakan.
Uji verifikasi terhadap desain struktur manipulator robot dilakukan berdasarkan aspek kinematika serta dinamik dimana menilai workspace yang dihasilkan, kondisi kerja manipulator robot serta tingkat kestabilan struktur.
Selain aspek struktur, kinematik serta dinamika pergerakan, dilakukan proses desain pengendalian pergerakan lengan robot baik perangkat lunak maupun perangkat keras. Desain perangkat lunak mengacu hasil dari nilai sudut-sendiri pergerakan keluaran perhitungan trajectory planning, kemudian dapat dihitung jumlah step yang diperlukan untuk menggerakan motor stepper, dan selanjutnya dihitung jumlah pulsa yang harus dikirimkan ke masing-masing motor. Desain perangkat keras meliputi desain yang berfungsi sebagai interface antara komputer sebagai pengendali motor stepper (berfungsi sebagai sistem penggerak robot dengan lengan robot). Dan desain pengendali pergerakan motor stepper yang berfungsi sebagai penggerak logika (berfungsi untuk melakukan proses switching pada motor stepper).
Uji validasi desain dilakukan dengan mengintegrasikan aspek struktur, kinematika, dinamika serta kontrol dimana menguji tingkat akurasi posisi, akurasi lintasan, overshoot serta resolusi."
Depok: Fakultas Teknik Universitas Indonesia, 1998
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Azwar Satrya Muhammad
"Perancangan perangkat keras pengendali motor stepper pada studi kasus robot jenis artikulasi dengan enam derajat kebebasan, meliputi perancangan interface card dan pengendali motor stepper, serta menggunakan mikroprosessor (Personal Computer) sebagai pengendali utama (pembangkit pulsa), karena menggunakan motor stepper maka sistem pengendalian yang digunakan dapat menggunakan sistem open loop. Interface card berfungsi sebagai perantara antara PC dengan pengendali motor stepper, dan pengendali motor stepper berfungsi sebagai penggerak Iogika. Penggerak logika ini menghasilkan pulsa yang berguna untuk menggerakan motor stepper, berdasarkan urutan mode pergerakan motor stepper.
Pengujian hasil rancangan (interface card dan pengendali motor stepper) dilakukan dengan menguji tiap sambungan antara tiap tiap kaki IC pada interface card serta antara kaki IC pada pengendali motor stepper dengan menggunakan multi tester. Pengujian kedua yaitu menguji sinyal input dan output IC pada interface card dan pengendali motor stepper dengan menggunakan osciloscope dengan input yang telah diprogram. Dan yang ketiga adalah pengujian ketelitian motor stepper.
Dari ketiga pengujian diatas hasil perancangan perangkat keras pengendali motor stepper pada studi kasus robot jenis artikulasi dengan enam derajat kebebasan yang meliputi perancangan interface card dan pengendali motor stepper dapat berlimgsi dengan baik dan ketelitian dan motor stepper sangat baik."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S36198
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andree Dwi Harianto
"Dewasa ini, kebanyakan dari waktu produksi dihabiskan untuk memprogram dan memprogram ulang robot. Teknik-teknik baru diciptakan untuk menghidari kejadian sepeti ini, salah satunya adalah pemprograman off-line, membutuhkan keakurasian model kinematik robot. Untuk mewujudkan model ini dibutuhkan pengukuran robot.
Posisi yang akurasi dari system robot dapat di karakteristikan digambarkan dalam beberapa cara. Kemampuan pengulangan menentukan akurasi yang mana pencapaian posisi (dan orientasi) secara tepat dari end-effector di ruang kerjanya, ketika nilai dari joint robot berulang. Kemampuan mengulang dapat dicapai sampai sepersepuluh millimeter dan sepersemenit dari arc. Dalam tulisan kaii ini dicoba sebuah metode photogrammetri yang sederhana untuk mengkalibrasi robot RV-M1.

Nowdays, most of production time waste on programming and re programming robot. Some new technic are invent to avoid such this situation, one of them call an onlline programming, and that needs accuracy in kinematic ofthe robot. For thot, measurement of robot needs.
Accurate position of the robot can be characteriseci The repecztabifity devide accuracy which make end-ejector reach its position exactiy in it space of movement. The accuracy of repeatability can reach upto one tenth or one per minute of arc. This time, writer by to use o calibration using a photogrammetry method to test the accuracy of robot RV-M1.
"
Depok: Fakultas Teknik Universitas Indonesia, 2003
S37294
UI - Skripsi Membership  Universitas Indonesia Library
cover
Coiffet, Philippe
New York: McGraw-Hill, 1982
629.892 COI i
Buku Teks  Universitas Indonesia Library
cover
Jimmy
"Suatu komplek pabrik terpadu pada umumnya memiliki kantor operasional, kantor pengendalian, gudang penyimpanan bahan baku, gudang penyimpanan hasil produksi, serta beberapa lokasi unit produksi yang terpisah satu dengan yang lainnya. Barang yang telah dihasilkan pada unit produksi akan disimpan pada gudang penyimpanan. Robot dapat digunakan untuk memindahkan barang dari suatu lokasi unit produksi, untuk disimpan dalam gudang penyimpanan hasil produksi. Penggunaan robot dapat meminimalkan waktu produksi, biaya produksi, serta kesalahan manusia. Untuk dapat melakukan pemindahan hasil produksi, maka robot harus dapat mengenali rute yang tepat antara lokasi unit produksi dengan lokasi gudang penyimpanan. Pada tesis dilakukan simulasi proses pemindaham hasil produksi pabrik menggunakan robot. Robot yang digunakan menggunakan konstruksi mekanik yang dinamakan Tribot. Tribot merupakan desain mekanik dari Lego Mindstorms NXT. Tribot menggunakan dua prosesor sebagai pusat pengendali, dan tiga buah sensor, yaitu sensor cahaya untuk mendeteksi jalur Tribot, sensor ultrasonik untuk mengetahui adanya hambatan pada lintasan, serta sensor sentuh untuk mendeteksi letak objek tambang. Untuk bergerak Tribot menggunakan dua buah motor dan satu motor untuk menggerakkan lengan. Setelah menemukan barang hasil produksi, maka robot akan menyimpan lokasi unit produksi tersebut, dan membawanya menuju gudang penyimpanan.

The factory integrated area should have operational office, controlling office, raw material warehouse, factory?s products warehouse, and production units. The product from production unit will be saved in factory?s products warehouse. Robot can be used to move the factory?s products to the warehouse. Using the robot will minimize production time, production cost, and human?s errors.Robot must have the ability to identify the route from factory?s unit production to the warehouse. Simulation in transferring the products from factory?s unit production to the warehouse using robot is the topic of this thesis. Robot, which is used in the simulation, is built using Tribot mechanical construction from Lego Mindstorms NXT.Tribot is using dual processor as central processing unit. Light sensor used for detecting and tracking the line, the ultrasonic sensor used for detecting obstacle, and touch sensor used for detecting mining object. Three servomotors are used in Tribot, two of them are used for Tribot?s movement, and the last servomotor is used to grab or clamp the product. After found the factory?s product, Tribot will go back and carry that product, and the location of the production unit area will memorized by Tribot."
Depok: Fakultas Teknik Universitas Indonesia, 2007
T23309
UI - Tesis Membership  Universitas Indonesia Library
cover
Knight, Timothy Orr.
New York : McGraw-Hill, 1984.
629.892 KNI p
Buku Teks  Universitas Indonesia Library
cover
Zedric Immanuel Abetto
"Skripsi ini membahas perancangan dan prototipe dari robotic finger dengan dua derajat kebebasan yang dikendalikan secara underactuated dan memiliki link atau ruas-ruas jari yang dapat diatur stiffness nya. Metode underactuated ini menggunakan kabel tendon yang berfungsi untuk menggerakkan joint-joint pada robotic finger sehingga dapat meniru gerakan flexion dan extension jari manusia. Kemudian, link pada robotic finger ini dipadukan dengan variable stiffness link berbasis kontrol struktur untuk mengatur stiffness link-link tersebut. Penelitian ini dilakukan dengan cara melakukan perancangan menggunakan perangkat lunak Autodesk Inventor Professional 2023, perhitungan dengan metode analitik, simulasi metode elemen hingga dengan perangkat lunak Ansys Student 2023, dan eksperimen uji tarik untuk mengevaluasi kinerja prototipe robotic finger. Eksperimen yang dilakukan adalah bending test dengan objek robotic finger untuk mengetahui efek penggunaan variable stiffness link. Nilai Stiffness terendah robotic finger berdasarkan metode analitik, numerik, dan eskperimen berturut-turut adalah 0.0499 N/mm, 0.0573 N/mm, dan 0.0806 N/mm. Nilai Stiffness tertinggi robotic finger berdasarkan metode analitik, numerik, dan eskperimen berturut-turut adalah 5.25 N/mm, 1.89 N/mm, dan 0.400 N/mm.

This thesis discusses the design and prototype of an underactuated robotic finger with two degrees of freedom, controlled by under actuation, and featuring adjustable stiffness in its finger links or segments. The underactuated method employs tendon cables to actuate the joints of the robotic finger, enabling it to mimic the flexion and extension movements of a human finger. Additionally, the links in this robotic finger are combined with variable stiffness links based on structural control to regulate the stiffness of the links. This research is conducted through a design process using Autodesk Inventor Professional 2023 software, analytical calculations, finite element method simulations using Ansys Student 2023 software, and tensile testing experiments to evaluate the performance of the robotic finger prototype. The performed experiment involves a bending test on the robotic finger to assess the effects of using variable stiffness links. The lowest stiffness values for the robotic finger, as determined by analytical, numerical, and experimental methods, are 0.0499 N/mm, 0.0573 N/mm, and 0.0806 N/mm, respectively. The highest stiffness values for the robotic finger, based on the analytical, numerical, and experimental methods, are 5.25 N/mm, 1.89 N/mm, and 0.400 N/mm, respectively."
Depok: 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Chandra
"Skripsi ini disusun untuk mengetahui dan mempelajari konsep perancangan analisis dinarnika dari prototip robot manipulator jenis artikulasi dengan enam derajat kebebasan yang kemudian diharapkan dapat dikembangkan untuk proses las busur. Hasil perhitungan rancangan dinamika ini kemudian menjadi bagian integral dari pembuatan perangkat lunak pengendali gerak kinematik manipulator.
Masalah dinamika ini meliputi persamaan-persamaan untuk memperoleh kecepatan dan percepatan anguler dan linier, gaya pada lengan-lengan manipulator dan gaya dan momen penunjang dan torsi penggerak masing-masing sendi. Perhitungan analisis dinarnika ini menggunakan metode Newton-Euler. Spesifikasi awal prototip dibuat berisi parameter-parameter dan variabel pada manipulator. Langkah selanjutnya adalah melakukan rangkaian perhitungan rinci menurut bidang-bidang tertentu, yang akan dibahas disini adalah mengenai analisis dinamika robot manipulator yang dimaksud.
Dari rangkaian perhitungan analisis dinamika yang dilakukan, diperoleh parameter-parameter dinamika robot manipulator berupa hasil perhitungan rekursif maju dan rekursif mundur menurut formulasi Newton-Euler, rangkaian parameter ini kemudian digunakan untuk mengetahui sifat dinamik manipulator dengan berbagai pembebanan. Untuk lebih memudahkan perhitungan lebih lanjut, hasil perhitungan yang diperoleh dibuatkan dalam bentuk program yang disusun dalam bahasa C.
Analisis dinamika dengan menggunakan metode Newton-Euler rnenunjukkan masing-masing parameter yang diperoleh rnasih dalam bentuk variabel bebas, dimana variabel bebas tersebut diperoleh dengan menghitung trajectory planning, demikian juga nilai-nilai sudut masing-masing join yang diperoleh dari perhitungan inverse kinematik yang dilakukan pada bagian lain. Dari hasil persamaan yang diperoleh, dapat dilihat bahwa faktor massa dan pembebanan akan sangat mempengaruhi performansi dinamik manipulator tersebut."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S36184
UI - Skripsi Membership  Universitas Indonesia Library
cover
Devin Ardisa Thiodorus
"COVID-19 had caused a global crisis in many aspects of many people life. This virus has shaken the infrastructure readiness on facing an emergency situation global health in the world. The most dangerous part of this virus is the way it spread. Patients with this disease can infect people within radius of 2 meters via air (airborne). Based on data received from Ikatan Dokter Indonesia (IDI), for every 100 people passed away due too COVID-19, 6-7 health personel also passed away with the same reason. Hence, it is important to have an autonomous intravenous liquid exchanger to reduce the chance of infected. With this device, medical personels can operate the arm robot from a control room to execute the operation of intravenous liquid exchange, temperature measurement, and blood pressure measurement.

COVID-19 had caused a global crisis in many aspects of many people life. This virus has shaken the infrastructure readiness on facing an emergency situation global health in the world. The most dangerous part of this virus is the way it spread. Patients with this disease can infect people within radius of 2 meters via air (airborne). Based on data received from Ikatan Dokter Indonesia (IDI), for every 100 people passed away due too COVID-19, 6-7 health personel also passed away with the same reason. Hence, it is important to have an autonomous intravenous liquid exchanger to reduce the chance of infected. With this device, medical personels can operate the arm robot from a control room to execute the operation of intravenous liquid exchange, temperature measurement, and blood pressure measurement."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>