Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 189094 dokumen yang sesuai dengan query
cover
Mulyono
Depok: Fakultas Teknik Universitas Indonesia, 1999
S35615
UI - Skripsi Membership  Universitas Indonesia Library
cover
Josia Irwan Rastandi
Depok: Fakultas Teknik Universitas Indonesia, 1994
S34446
UI - Skripsi Membership  Universitas Indonesia Library
cover
"One of the consequences of regional autonomy is that many regional governments are anthusiastic to improve their transportaion infrastructures, such as constructing simple suspension bridges. Direktorat Jenderal Bina Marga Depertemen Pekerjaan Umum has published standards and compiled information of suspension bridges in various areas in Indonesia. The bridge-span is generally between 20 to80 m, some are 120 m, and about 1.7 m in width of deck. Based on the standards, some regional governments want to have the simple suspension bridge, but need larger span. Kabupaten Sragen is one of the regional governments planning to construct the suspension bridge connecting Kliwonan to Butuh. However, it is important to notice that such a type of bridge is light, thin, limited in width and in length, sensitive to bending, torsion and vibrations, which are due to the asymetric life-load and wind loads.
The objective of this study is to identify the influence of the deck-width augmentation to the behaviour of 40 m to 130 m span suspension bridge by reviewing the natural frequency of structure (bending and torsion behavior) caused by asymmetric life-loads and dynamic wind loads.
Greater length of the bridge-span results in lower natural bending frequency (fb). For a bridge with more than 90 m span length, fb is significantly low (less than 0.6 Hz). Augmenting the deck-width from 1.5 m to 1.7 m and 1.9 increases the frequency ratio (torsional frequency/fb).
Greater length of the bridge-span will also result in larger vertical and horizontal bending. However, horizontal bending declines when the bridge deck is widened. As for a bridge with more than 100 m in span and 1.5 m in width, the bending value exceeds the allowable limit. The declining percentage of the horizontal bending value due to the 0.2m width augmentation ranges between 1 to 10%. Greater span result in gretaer angle of rotation. On the other hand, wider deck shows lessening angle of rotation. It is shown that augmenting the bridge width from 1.5 m to 1.7 m and 1.5 m to 1.9 m decrease the angle of rotation to 10% and 20%, respectively. The maximum torsion response due to dynamic wind load increases in conjunction to the bridge-span augmentation. However, augmenting the bridge deck from 1.7 m to 1.9 m reduces the maximum torsion response from 1.5% to 13.4%.
For simple suspension bridge, it is suggested to limit the span length to 100 m, and deck-width augmentation from 1.5 m to 1.9 m at maximum. Greater span requires steel stiffening reinforcement on the bridge deck."
MTUGM 30:4 (2008)
Artikel Jurnal  Universitas Indonesia Library
cover
"Lendutan yang terjadi pada struktur blok atau rangka batang akan berbanding lures dengan panjang bentang balok atau rangka batang tersebut, artinya semakin panjang bentang maka lendutan yang terjadi akan sernakin besar, diiihat dari aspek teknis lendutan yang besar akan mengurangi keamanan struktur oleh karena itu lendutan yang terjadi harus dibmasi. Pembatasan lendutan ini selanjutnya disebut dengan lendutan izin yang besarnya menurut Peratu.ran Perencanaan Bangunari Baja Indonesia (PPBBI 1984) adalah L1360 dimana L adalah panjang bentang struktur tersebut. Apabila struktur baloklrangka baja mengalami lendutan yang melebihi lendutan ijinya belum tentu bahwa struktur tersebut tidak kuat terhadap beban atau gaya yang dipikulnya, karena kontrol lendutan baru bisa dilakukan setetah ukuran profil ditentukan terlebih dahulu. Adanya kontrol lendutan adalah sebagai syarat dari days layan (serviceability) dari suatu struktur. Kasus yang akan dianalisa oleh penulis adalah yang terjadi pads Jembatan Pipa Pertamina Cipunegara, dimana lendutan yang terjadi adalah 31,30 cm sedangkan lendutan yang diijinkan untuk bentang 80 m adalah 22,20 cm (L1360 sedangkan berdasarkan data yang diperoleh penulis hasil perhitungan kontraktor lendutan yang diijinkan adalah 1,1300 atau 26 cm) sehingga dapat disimpulkan bahwa lendutan yang terjadi melebihi dari yang diijinkan. Untuk mengatasi hal ini dengan tidak mengganti profil yang telah dipakai maka pada jembatan tersebut dipasang kabel prategang external pada kedua balok induk jembatan, sehingga dengan memberikan gaya tank pads kabei prategang diharapkan lendutan yang ter adi pada jembatan tersebut akan lebih kecil. Dalam Tugas Akhir ini penulis akan menganalisa berapa besarnya gaya prategang yang harus diberikan sehingga sehingga lendutan yang terjadi lebih keeil dari yang diij:nkan_ Untuk perhitungan lendutan yang terjadi pada struktur rangka penulis akan menggunakan program komputer seperti STAAD Ill"
Fakultas Teknik Universitas Indonesia, 2002
S35660
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hardi Purnawan
"Compo-girder merupakan salah satu jenis dari berbagai type girder. Bagian-bagian dari compo-girder adalah bagian flange yang terbuat dari pelat baja. bagian web yang terbuat dari beton bertulang, dan penghubung antara flange dengan web yaitu shear connector. Jumlah shear connector yang mencukupi akan menjamin kesatuan flange dan web sehingga dapat bekerja bersama-sama. Beban yang diterima compo-girder adalah beban mati struktur jembatan dan beban lalu lintas yang bekerja. Beban lalu-lintas bekerja pada deck jembatan kemudian diteruskan ke girder jembatan. Deck jembatan selain berfungsi untuk menerima beban lalu-lintas juga berfungsi sebagai penahan arah lateral adalah cross flame. Penggunaan cross flame sudah terlebih maka tidak akan memberi banyak pengaruh pada kekuatan struktur secara keseluruhan. Pada skripsi ini dibahas sejauh mana efektifitas dari penggunaan cross flame pada struktur jembatan. Salah satu parameter yang menentukan kekuatan compo-girder adalah tulangan longitudinal pada bagian web. Pada penelitian ini parameter inilah yang diteliti sedangkan mengenai tulangan geser, flange compo-girder dan shear connector tidak diteliti. Pengaruh tulangan terdistribusi terhadap kekuatan pengampang menjadi bahasan dalam penelitian ini."
Depok: Universitas Indonesia, 2003
S34738
UI - Skripsi Membership  Universitas Indonesia Library
cover
Endang Widiastuti
Depok: Universitas Indonesia, 1991
S34352
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Fauzan
Depok: Fakultas Teknik Universitas Indonesia, 1996
S35537
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lubis, Muhammad Idris
"ABSTRAK
Sering sekali dijumpai di lapangan struktur balok lantai jembatan maupun gedung berupa struktur grid. Akan tetapi struktur-struktur tersebut tidak dianalisa sebagal struktur grid, melainkan dianalisa sebagai balok sederhana (simple beam) dengan cara menganalisanya satu-persatu. Balok melintang dianalisa terlebih dahulu baru kemudian balok memanjangnya, atau sebaliknya. Karena itu akan dicoba dibandingkan antara analisa struktur grid dengan analisa struktur balok sederhana (simple beam).
Analisa struktur grid dilakukan dengan metode kekakuan dengan menggunakan bantuan program aplikasi komputer SAP 2000. Beban yang bekerja mengacu kepada Pedoman Perencanaan Pembebanan Jembatan Jalan Raya tahun 1987 (PPPJJR 1987).
Dari hasil perbandingan menunjukkan bahwa gaya-gaya dalam berupa momen lentur dan gaya lintang yang ter adi pada analisa struktur grid lebih kecil dibandingkan dengan analisa struktur simple beam.

"
Fakultas Teknik Universitas Indonesia, 2001
S35651
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Sastradinata
"Jembatan merupakan infrastruktur dari jaringan jalan dan bagian dari alat peningkatan aktivitas perekonomian baik dari skala daerah maupun nasional. Perawatan jembatan sangat diperlukan, untuk merawat jembatan diperlukan kemampuan manusia dalam penguasaan ilmu pengetahuan yang mendukungnya dan penguasaan teknologi. Tujuan penulisan karya ilmiah ini menganalisa kemungkinan penyebab keruntuhan jembatan gantung yaitu pertama pengaruh variasi gaya dinamik dengan tiga parameter tetap yaitu beban lalu lintas satu sisi (asimetris), lokasi penarikan kabel satu sisi (asimetris), dan efek kekakuan rangka 100%. Kedua menganalisa pengaruh variasi efek kekakuan rangka dengan tiga parameter tetap yaitu beban dinamik, lokasi penarikan kabel satu sisi (asimetris), dan beban lalu lintas satu sisi (asimetris).
Metode analisa dilakukan dengan memasukkan data material, properti penampang, geometri jembatan, modelisasi struktur dalam bentuk tiga dimensi, kemudian melakukan variasi gaya dinamik dan variasi kekakuan rangka menggunakan program komputer berbasis elemen hingga. Kesimpulan dari hasil analisa adalah pada durasi dua detik gaya dinamik yang diberikan berpengaruh besar terhadap gaya-gaya dalam hold clamp. Variasi nilai kekakuan rangka yang diberikan berbanding lurus dengan bertambah besarnya gaya-gaya yang dipikul oleh struktur rangka jembatan. Degradasi material dan elemen pendukung di sekitar hold clamp tidak ikut diperhitungkan dalam studi ini.

Bridge is an infrastructure of road networks economic means of increased activity from both local and national scale. Care is indispensable bridge, the bridge needed to treat human ability in mastering knowledge and mastery of technology that supports it. The purpose of writing this paper analyzes the possible causes of the collapse of a suspension bridge is the first effect of variations in dynamic style with three parameters fixed at one side of the traffic load (asymmetric), the location of the withdrawal cord one side (asymmetrical), and the effect of the stiffness of order 100 %. Both analyze the effect of variations in stiffness effects framework with three fixed parameters are dynamic loads, the location of the withdrawal cord one side (asymmetrical), and the traffic load one side (asymmetrical).
The method of analysis is done by inserting a material data, crosssectional properties, the geometry of the bridge, modelisasi structures in three dimensions, and then do a variety of styles and variations of the dynamic stiffness of the framework using a finite element based computer program. Conclusions from the analysis of the duration of two seconds is a dynamic force that is given a major effect on the forces in the clamp hold. Variations in the value of a given frame stiffness is proportional to the increased magnitude of the forces are carried by the frame structure of the bridge. Degradation of the material and the supporting elements around the clamp hold not taken into account in this study.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S54029
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>