Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 124635 dokumen yang sesuai dengan query
cover
Mutammimal Ahkam, Author
"Sintesis nanozeolit telah dilakukan dengan teknik seeding, dimana seed merupakan zeolit Y dengan tetraetilortosilikat (TEOS) sebagai sumber silika dan aluminium isopropoksida Al[((CH3)2CHO)]3 sebagai sumber aluminium dan tetrametilammonium hidroksida (TMAOH) sebagai molekul pengarah struktur. Proses kristalisasi dilakukan dengan teknik refluks pada suhu 100oC selama 192 jam. Kondisi optimum untuk pertumbuhan kristal zeolit adalah pada pH 9 dengan lama pertumbuhan kristal FAU selama 18 jam pada suhu 100oC dengan volume seed 10 mL dalam 20 mL larutan koloid FAU. Nanozeolit hasil sintesis dikarakterisasi menggunakan XRD, SEM-EDS, FTIR dan BET. Pola XRD menunjukkan nanozeolit memiliki struktur zeolit Y, yang diperkuat dengan rasio Si/Al sebesar 1,84 dari karakterisasi dengan EDS. Pencitraan dengan SEM menunjukkan bahwa kristal zeolit tumbuh saling bertumpuk membentuk agregat dengan ukuran 2 µm. Analisis dengan metode BET menunjukkan luas permukaan spesifik zeolit, diameter pori rata-rata dan volume pori berturut-turut adalah 521,682 m2/g, 10,667 Å, dan 0,2783 cc/g. Untuk pemisahan gas, telah dilakukan sintesis membran nanozeolit pada suatu kasa baja stainless dengan teknik redispersi. Membran selanjutnya diuji untuk aplikasi pemisahan gas metanol-etanol sebagai gas model dan dideteksi menggunakan GC-FID. Pengamatan awal menunjukkan bahwa gas etanol dapat tertahan oleh membran.

Abstract
Nanozeolit synthesis was conducted by seeding method, in which the seed is a zeolite Y with tetraethyil orthosilicate (TEOS) as silica source and aluminium isopropoxide Al[((CH3)2CHO)]3 as a source of aluminum and tetramethylammonium hydroxide (TMAOH) as the structure directing agent. Crystallization process carried out by using reflux at a temperature of 100oC for 192 hours. The optimum conditions for crystal growth of zeolite crystals at pH 9 with FAU-term growth for 18 hours at a temperature of 100oC with seed volume 10 mL in 20 mL of colloid solution FAU. Nanozeolite synthesis products were characterized using XRD, SEM-EDS, FTIR and BET. XRD pattern shows nanozeolite has the structure of zeolite Y, which is reinforced with Si/Al ratio of 1.84 from the characterization by EDS. SEM imaging showed that the zeolite crystals grow over one another to form aggregates with a size of 2 µm. The analysis by the BET method shows specific surface area of zeolite, average pore diameter and pore volume are 521.682 m2/g, 10.667 Å and 0.2783 cc/g, respectively. For gas separation, synthesis membrane of nanozeolite has been done in a stainless steel mesh by redispersion method. Membranes were then tested for gas separation applications of methanol-ethanol as a gas model and detected using GC-FID. Initial observations indicate that ethanol gas can be restrained by the membrane. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S206
UI - Skripsi Open  Universitas Indonesia Library
cover
Mutiara Pangestika Gunarso
"Pengujian pemisahan gas dilakukan dengan menggunakan membran cair yang telah dimodifikasi dengan nanozeolit Na-Y. Membran cair yang digunakan adalah cairan higroskopik gliserol yang diimpregnasikan ke dalam membran hidrofilik berpori polyvinilidene fluoride (PVDF). Membran PVDF ini berfungsi sebagai support dari gliserol. Membran cair tersebut dimodifikasi dengan nanozeolit Na-Y dan dilakukan pengujian untuk aplikasi pemisahan gas. Nanozeolit yang digunakan disintesis dengan menggunakan metode seeding. Hasil nanozeolit yang terbentuk kemudian dikarakterisasi dengan menggunakan SEM-EDS, XRD, FTIR, BET, serta PSA. Pola XRD menunjukkan nanozeolit yang terbentuk memiliki struktur zeolit Y. Hasil karakterisasi dengan SEM-EDS menunjukkan kristal nanozeolit yang saling bertumpuk dengan struktur berbentuk kubus dengan rasio Si/Al 3,21. Berdasarkan hasil pengukuran dengan menggunakan PSA, didapatkan distribusi terbesar dari ukuran nanozeolit adalah 2 nm. Campuran gas yang digunakan untuk aplikasi pemisahan gas adalah campuran gas yang mengandung CO2, N2, serta O2 dengan rasio perbandingan volume 1:1:1. Pengujian pemisahan gas dilakukan pada suhu 250C dengan variasi tekanan 0,5 bar dan 1,5 bar. Variasi juga dilakukan pada jumlah nanozeolit (5%-20%) yang ditambahkan pada membran cair. Berdasarkan hasil percobaan, pemisahan gas CO2 paling baik terjadi pada tekanan 0,5 bar dengan 20% penambahan jumlah nanozeolit.

Examination of gas separation was carried out by using a Na-Y nanozeolite modified liquid membrane. Liquid of hygroscopic glycerol used as the liquid membrane was impregnated in a porous hydrophilic polyvinilidenen fluoride (PVDF) membrane. The PVDF membrane serves as a support of glycerol. The liquid membrane was modified by nanozeolite Na-Y examined for application of gas separation. Nanozeolite was synthesized by seeding method and then characterized by using SEM-EDS, XRD, FTIR, BET, and PSA. XRD patterns showed that nanozeolite structure was zeolite Y. SEM-EDS result showed that the crystal of nanozeolite grew over one another with cube-shaped structure and the Si/Al ratio is 3,21. Based on the PSA result, the biggest distribution size of nanozeolite obtained was 2 nm. A gas mixture that contains of CO2, N2, and O2 with volume ratio of 1:1:1 was used for gas separation. Examination of gas separation was carried out at 250C with various pressures of 0,5 bar and 1,5 bar. The number of nanozeolite in the liquid membrane was also varied (5%-20%). Based on experimental, the best separation of CO2 gas can be obtained with pressure of 0,5 bar and 20% the number of nanozeolite.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S1228
UI - Skripsi Open  Universitas Indonesia Library
cover
Yuko Gunawan
"ABSTRAK
Proses pemisahan gas H2 dari aliran purge gas pada pabrik ammonia perlu
dilakukan untuk meningkatkan efisiensi pabrik. Proses pemisahan menggunakan membran bisa menjadi teknologi altematif dalam pemisahan gas H2. Salah satu jenis membran yang bisa digunakan untuk proses tersebut adalah membran keramik, dimana membran tersebut memiliki stabilitas termal dan kimiawi yang baik, sehingga dapat dioperasikan pada suhu tinggi. Namun demikian membran keramik memiliki tingkat
selektivitas yang relatif lebih rendah dibandingkan membran polimer, oleh sebab itu perlu dilakukan upaya untuk meningkatkan selektivitasnya.
Penambahan lapisan logam nikel yang bersifat permeatif terhadap gas H2, pada permukaan membran keramik diharapkan dapat meningkatkan selektivitas membran dalam proses pemisahan gas H2. Dalam penelitian ini dilakukan preparasi membran keramik/nikel dengan metode presipitasi, untuk proses pernisahan campuran gas H2/N2. Tahap pengujian membran dilakukan terhadap membran keramik tanpa lapisan nikel dan keramik dengan lapisan nikel. Pengujian dilakukan pada kondisi ideal, menggunakan gas H2 dan N2 murni, serta pada kondisi aktual menggunakan campuran gas dengan komposisi 71.794 % H2 dan 28.206 % N2.
Dari hasil penelitian, menunjukkan adanya peningkatan permeabilitas dan
selektivilas pada memhran keramik/nikel dibandingkan dengan membran keramik tanpa Iapisan nikel. Kenaikan lekanan operasi menyebabkan penurunan harga selektivilas pada kedua jenis membran.
Nilai selektivitas ideal tertinggi untuk membran keramik dicapai pada tekanan 4 bar, yaitu sebasar 2.706. Sedangkan untuk membran keramik nikel nilai selektivitas tertingginya adalah 4.23, dan juga dicapai pada tekauan 4 bar.
Selektifitas aktual pada kedua jenis membran akan menurun apabila fraksi umpan yang permeat (stage cut) dinaikkan, dan penurunnya akan lebih tajam pada tekanan yang lebih tinggi. Selektivitas terbaik pada membran keramik, yaitu sebesar 1.689 dicapai pada tekanan 4 bar dengan stage cut sebesar 0.0995, sedangkan untuk membran keramik/nikel selektivitas terbaiknya sebesar 3.043, juga pada tekanan 4 bar, dan dengan Stage cut sebesar 0.0858.

"
2001
S49014
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahmat Basuki M
"ABSTRAK
Gas buangan yang terdapat dalam industri proses kimia terkadang masih mengandung gas hidrogen dalam konsentrasi yang relatif besar. Sementara itu, harga gas alam yang merupakan bahan baku utama pembuatan hidrogen cenderung naik, oleh karena itu perlu dipertimbangkan suatu cara yang terbaik untuk mendapatkan kembali gas hidrogen yang terikat di dalam gas buangan tersebut. Salah satu caranya adalah dengan menggunakan proses membran. Diantara berbagai jenis membran, jenis membran metal komposit memiliki kelebihan dibanding jenis membran lainnya. Diantaranya adalah bahwa jenis membran terscbut memiliki kctahanan thermal dan kimia serta selektivitas dan permeabilitas yang lebih tinggi.
Dalam penelitian ini digunakan membran keramik serta membran keramik/nikel untuk proses pemisahan campuran gas H2/N2. Pendeposisian logam nikel pada membran keramik dilakukan dengan menggunakan metode impregnasi.
Hasil penelitian menunjukkan bahwa permeabilitas ideal gas H2 dan N2 pada membran keramik relatif konstan terhadap perubahan tekanan. Sedangkan permeabilitas ideal dad kedua gas tersebut cenderung konstan untuk membran keramik/nikel.
Kenaikan tekanan pada membran keramik menyebabkan penunman harga selektivitas ideal H2/N2. Sedangkan untuk membran keramik/nikel selektivitas ideal H2/N2 berfluktuasi terhadap perubahan tekanan Selektivitas ideal H2/N2; tertinggi untuk membran keramik terjadi pada tekanan 400 kPa yaitu sebesar 2,71 sedangkan untuk membran keramik/nike] tenjadi pada tekanan 600 kPa sebesar 4,09. Selektivitas aktual H2/N2 tertinggi untuk membran keramik diperoleh pada tekanan 400 kPa pada stage cut 0.1927 yaitu 1,744 sedangkan untuk membran keramik/nikel diperoleh pada tekanan 400 kPa pada stage cut 0.1004 yaitu sebesar 2.996.

"
2001
S49011
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kurniyasari
"Sintesis nanozeolit dilakukan dengan teknik seeding. Seed yang digunakan merupakan koloidal zeolit Y dengan tetraethyl orto silicate (TEOS) sebagai sumber silika, aluminium isopropoxide Al[(CH3)2CHO)]3 sebagai sumber aluminium dan tetramethylammoniumhydroxide (TMAOH) sebagai template organik. Proses dilakukan dengan sistem refluks pada suhu 100ºC selama 192 jam dengan kondisi optimum pertumbuhan zeolit pada pH 9 dan waktu aging selama 18 jam pada suhu 100ºC dengan menambahkan koloidal seed ke dalam koloidal prekursor FAU. Untuk pemisahan gas, disintesis membran nanozeolit Y menggunakan silika berpori seperti, aerogel silika sebagai support, dengan komposisi zeolite Y/aerogel silika 2:1. Karakterisasi dengan XRD, SEM-EDX, FTIR dan PSA menunjukkan bahwa zeolit hasil sintesis merupakan zeolit FAU tipe Y dengan rasio Si/Al 3.2 dan berukuran 2 nm. Sedangkan karakterisasi XRD dan FTIR untuk membran nanozeolit menunjukkan bahwa membran yang dihasilkan bersifat nonpolar dan mengalami transformasi menjadi alumina silika berpori lain yang belum diketahui rasio Si/Al nya akibat penambahan aerogel silika yang belum terbebas dari template (pelarut organik) yang digunakan. Membran selanjutnya diuji untuk aplikasi pemisahan gas metanol-etanol dan dideteksi menggunakan GC-FID. Hasil pemisahannya menunjukkan bahwa membran hanya efektif digunakan pada analisa pertama dan kedua.
Nanozeolite synthesized by seeding method. Colloidal crystals of zeolite Y used as seeds were synthesize with tetraethyil orthosilicate (TEOS) as silica source and aluminium isopropoxide Al[((CH3)2CHO)]3 as a source of aluminum and tetramethylammonium hydroxide (TMAOH) as organic template. The process carried out in reflux system at 100ºC for 192 hours with optimum growth condition of the zeolite at pH 9 and aging time for 18 hours at 100ºC with adding of colloidal seed into colloidal precursors FAU. For gas separation application, membrane nanozeolite Y synthesized using porous silica such as, a aerogel silica, as a support, with the composition of zeolite Y/aerogel silica 2:1. Characterization by XRD, SEM-EDS, FTIR and PSA showed that the zeolite synthesis is FAU type Y zeolite with ratio Si/Al 3.22 and a size of 2 nm. Whereas, the characterization of XRD and FTIR for the membrane nanozeolite show that the resulting membrane is nonpolar and has formed a new structure of the unknown ratio of Si/Al was due to the addition of aerogel silica that have not been liberated from the template (organic solvent) is used. Futher tested for membrane gas separation applications of methanol-ethanol and detected using GC-FID.The results of separation showed that the membrane is only effective on the first and second analysis."
Depok: Universitas Indonesia, 2012
S42433
UI - Skripsi Open  Universitas Indonesia Library
cover
Arifina Febriasari
"Studi pemisahan gas CO2 dari CH4 penting dilakukan untuk meminimalisir efek negatif dari gas CO2 yang terkandung pada gas alam. Salah satu teknologi pemisahan yang banyak digunakan untuk pemisahan gas CO2 adalah teknologi membran. Tujuan dari penelitian ini adalah modifikasi membran CA menjadi fixed carrier membrane (FCM) dengan penambahan polietilen glikol (PEG) dan polietilen glikol metil eter akrilat (PEGMEA) sebagai zat aktif membran untuk meningkatkan permeabilitas gas CO2 pada membran. Produksi membran CA-PEGMEA dilakukan dengan proses mixing yang dilanjutkan dengan pemberian iradiasi sinar gamma secara simultan agar terjadi kopolimerisasi cangkok antara CA dan PEGMEA. Penambahan metilen bisakrilamida (MBA) pada studi awal dilakukan untuk mengetahui pengaruhnya terhadap sifat mekanik membran dan permeabilitas gas pada membran. Membran kemudian dikarakterisasi untuk mengetahui derajat kopolimerisasi (DC), perubahan struktur kimia (FTIR dan NMR), morfologi (SEM dan AFM), struktur kristal (XRD), serta kestabilan mekanik (UTM) dan termalnya (DSC). Metode Uji kinerja membran kemudian dilakukan terhadap gas murni CO2, gas murni CH4 dan gas campuran biner CO2 dan CH4. Uji karakterisasi DC menunjukkan bahwa nilai DC tertinggi terdapat pada membran CA-PEGMEA1(5), CA-PEGMEA3(15) dan CA-PEGMEA5(10). Hasil uji NMR menunjukkan adanya PEGMEA yang tercangkok pada polimer CA. Pada uji AFM ditunjukkan bahwa nilai kekasaran membran meningkat pada membran CA-PEGMEA dengan dosis iradiasi 5 kGy. Hasil analisis struktur kristal membuktikan kemungkinan bahwa PEG berinteraksi secara ikatan hidrogen dengan CA pada matriks polimer. Hasil uji kestabilan termal dan mekanik menunjukkan bahwa keberadaan MBA meningkatkan kestabilan termal dan mekanik, sedangkan pengaruh PEGMEA cenderung menurunkannya. Studi kinerja membran menunjukkan bahwa permeabilitas gas CO2 pada membran meningkat dengan adanya PEGMEA (dari 364 ke 679 barrer) yang tercangkok secara iradiasi pada membran, sedangkan pengaruh MBA justru menurunkan permeabilitas membran jika dibandingkan dengan membran CA-PEG tanpa MBA. Selektifitas ideal CO2/CH4 juga meningkat pada membran termodifikasi PEGMEA (dari 11 ke 48). Sementara itu hasil uji pemisahan gas binner CO2/CH4 menunjukkan bahwa fraksi mol CH4 pada retentate tertinggi didapatkan pada membran CA-PEGMEA1(5) dengan tekanan 40 Psi, yaitu 0,87.

It is essential to study the separation of CO2 from CH4 to minimize the adverse effects of CO2 in natural gas. Membrane technology is one of the most widely used separation technologies for CO2 gas separation. This study aimed to modify the CA membrane to become a fixed carrier membrane (FCM) with the addition of polyethylene glycol (PEG) and polyethylene glycol methyl ether acrylate (PEGMEA) as active membrane agents to increase the permeability of CO2 gas in the membrane. Production of CA-PEGMEA membranes was done by a mixing process followed by simultaneous gamma-ray irradiation so that graft copolymerization occurs between CA and PEGMEA. The addition of methylene bisacrylamide (MBA) in the initial study was carried out to determine the effect on the membrane's mechanical properties and gas permeability. The membranes were then characterized to determine the degree of copolymerization (DC), changes in chemical structure (FTIR and NMR), morphology (SEM and AFM), crystal structure (XRD), and mechanical stability (UTM), and thermal (DSC). Methods The membrane performance test was then carried out on CO2 pure gas, CH4 pure gas, and a binary mixture of CO2 and CH4 gases. The DC characterization test showed that the highest DC values were found in CA-PEGMEA1(5), CA-PEGMEA3(15), and CA-PEGMEA5(10) membranes. The NMR test results confirmed the presence of PEGMEA grafted onto the CA polymer. The AFM test showed that the value of membrane roughness increased on the CA-PEGMEA membrane with an irradiation dose of 5 kGy. The results of the crystal structure analysis prove the possibility that PEG interacts by hydrogen bonding with CA in the polymer matrix. The results of the thermal and mechanical stability tests show that the presence of MBA increases the thermal and mechanical stability, the influence of PEGMEA tends to decrease it. Membrane performance studies showed that the CO2 gas permeability of the membrane increased in the presence of PEGMEA (from 364 to 679 barrer) grafted irradiated onto the membrane, while the effect of MBA decreased membrane permeability when compared to CA-PEG membranes without MBA. The ideal selectivity of CO2/CH4 also increased in PEGMEA-modified membranes (from 11 to 48). Meanwhile, the CO2/CH4 binary gas separation test results showed that the mole fraction of CH4 in the highest retentate was found in the CA-PEGMEA1(5) membrane with a pressure of 40 Psi, i.e., 0.87."
Depok: Fakultas Teknik Universitas Indonesia, 2023
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Donanta Dhaneswara
"ABSTRAK
Teknologi membran untuk proses pemisahan dan pengayaan gas merupakan teknologi yang paling banyak digunakan karena alasan teknis dan ekonomis. Membran yang sering digunakan sampai saat ini adalah jenis membran polimer, namun membran ini memiliki keterbatasan antara lain; cepat rusak atau robek dan tidak tahan temperatur tinggi. Oleh karena itu, dicobadigunakan jenis membran lain yaitu membran keramik yang memiliki kestabilan thermal dan kimia lebih tinggi dibandingkan dengan polimer.
Pada penelitian ini digunakan membran keramik dengan bahan baku sebagai berikut; Feldspar 55%, Pasir Silika 6%, Clay 17%, Kaolin 13%, Talc %, CaCO^3 4% dan air 40%. Bahan-bahan ini dicampur menghasilkan bubur atau slip kemudian dispray drying. Hasilnya yang berupa lempengan dihancurkan dan diayak. Hasil ayakan ini baru dikompaksi dengan tekanan yang divariasikan yaitu 200 kg/cm^2, 250 kg/cm^2 dan 300 kg/cm^2. Setelah itu disinter dengan temperatur 1155℃ dengan waktu sinter 70 menit. Kemudian diamati pengaruh variasi tekanan kompaksi terhadap sifat fisik membran yaitu porositas, diameter pori, kekerasan, bending strength, struktur mikro serta kinerja membran yaitu permeabilitas dan selektivitas gas CO_2 dan N_2.
Hasil penelitian ini menunjukkan bahwa meningkatya tekanan kompaksi cenderung menurunkan porositas dan diameter pori. Pada tekanan kompaksi 200 kg/cm^2 diperoleh porositas 0,03725% dan diameter pori 7,5046μm, pada tekanan kompaksi 250 kg/cm^2 0,0184% dan 5,2437μm serta tekanan kompaksi 300 kg/cm^2 0,00% dan 3,52798μm.
Sedangkan kekerasan dan bending strengthnya mengalami kenaikan dengan bertambah besarnya tekanan kompaksi. Pada tekanan kompaksi 200 kg/cm^2 diperoleh kekerasan dan bending strength sebesar 18 HRB dan 600,693 kg/cm^2, lalu naik pada tekanan kompaksi 250 kg/cm^2 yaitu 19 HRB dan 624,759 kg/cm^2, sedangkan tekanan kompaksi 300kg/cm^2 0,00% dan 3,52798 μm.
Sedangkan dari hasil visual foto struktur mikro dapat diamati bahwa penyebaran (distribusi) pori merata dengan bentuk pori bulat. Dan semakin besar tekanan kompaksinya maka jumlah pori-pori yang tersebar semakin sedikit dan ukuran diameter pori rata-ratanya juga mengecil.
Untuk permeabilitas CO^2 terlihat lebih besar dibandingkan dengan gas N^2. Namun semakin besar tekanan kompaksinya maka semakin menurun nilai permeabilitas gas baik CO^2 maupun N^2. Hasil yang diperoleh adalah pada tekanan kompaksi 200 kg/cm^2 permeabilitas CO^2 dan N^2 yaitu 1,918.10^-16 dan 8,767.10^-17m^2/det Pa, pada tekanan kompaksi 250 kg/cm^2 yaitu 1,918.10^-16 dan 8,767.10^-17 m^2/det Pa, pada tekanan kompaksi 250 kg/cm^2 yaitu 1,798.10^-16 dan 4,46.10^-17m^2/det Pa, serta terendah yaitu pada tekanan kompaksi 300 kg/cm^2 yaitu 1,365.10^-16 dan 2,191.10^-17 m^2/det Pa.
Dalam pengujian selektivitas, semakin besar tekanan kompaksi maka membran semakin selektif. Hal ini dapat dilihat dari selektivitas yang semakin besar. Pada tekanan kompaksi 200 kg/cm^2 diperoleh selektivitas 2,18776, kemudian naik pada tekanan kompaksi 300kg/cm^2 yaitu 6,2217.
Dari hasil penelitian ini menunjukkan bahwa membran keramik dengan komposisi seperti tersebut di atas, dengan kondisi tekanan kompaksi terbesar yaitu 300 kg/cm^2 dan temperatur sinter 1155℃ dan waktu sinter 70 menit dapat digunakan sebagai membran keramik. Tetapi tidak menutup kemungkinan, jika dilakukan perbaikan komposisi dan perbaikan perlakuan pembuatan dapat dihasilkan membran yang lebih baik lagi."
Fakultas Teknik Universitas Indonesia, 1999
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Adhitya Nugraha
"Teknologi membran merupakan salah satu alternatif dalam proses pemisahan selektif. Penggunaan keramik sebagai bahan dasar dalam pembuatan membran mempunyai banyak keunggulan. Sifatnya yang stabil pada temperatur tinggi tahan terhadap serangan kimia dan ketahanan korosi membuat keramik merupakan bahan dasar pembuatan membran yang sangat dapat diandalkan.
Silika yang digunakan dalam penelitian ini mempunyai banyak keunggulan baik dalam sifat fisik maupun sifat mekanik. Jumlahnya yang melimpah di permukaan bumi, karakteristik strukturnya yang unik pada temperatur tinggi merupakan beberapa alasan dipilihnya silika sebagai bahan baku pembuatan support membran keramik.
Pembuatan membran keramik menggunakan teknologi metalurgi serbuk. PVA dengan variasi penambahan 6 ml, 9 ml, dan 12 ml ditambahkan pada serbuk silika dengan ukuran 200 mesh yang telah dicampur dnegan kaolin yang sebelumnya telah dikeringkan dengan pemanasan 200ºC selama 2 jam. Kemudian serbuk dibentuk dengan beban sebesar 10 ton kemudian disinter pada temperatur 1390ºC selama 6 jam.
Hasil penelitian memperlihatkan kecenderungan peningkatan porositas dengan peningkatan penambahan PVA. Persentase yang dihasilkan adalah sebesar 30.367%, 31.985%, dan 32.683% untuk penambahan PVA masing-masing sebanyak , 9 ml, dan 12 ml. Sedangkan nilai kekerasan yang didapatkan adalah sebesar 390.64 gr/μm², 283 gr/μm² dan 198.78 gr/μm² masing-masing untuk penambahan PVA sebanyak , 9 ml, dan 12 ml."
Depok: Fakultas Teknik Universitas Indonesia, 2003
S41277
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sutrasno Kartohardjono
Jakarta: UI-Press, 2011
PGB 0335
UI - Pidato  Universitas Indonesia Library
cover
Mulder, Marcel, 1951-
Dordrecht: Kluwer Academic, 1991
660.284 2 MUL b (1)
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>