Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7612 dokumen yang sesuai dengan query
cover
Ronnie Higuchi Rusli
Jakarta: UI-Press, 1995
669.94 RON d
Buku Teks SO  Universitas Indonesia Library
cover
cover
Wood, W.A.
New York: Pergamon Press, 1971
669.94 WOO s
Buku Teks SO  Universitas Indonesia Library
cover
"This new volume of modern aspects of electrochemistry reviews different methods for the production of metal powders including mechanical, chemical and electrochemical powders. Electrochemically produced metal powders are of high purity and they are extremely active during sintering. These powders find a wide-range of applications in automotive, aerospace, energy device and electronics industries."
New York: Springer, 2012
e20405847
eBooks  Universitas Indonesia Library
cover
Clason, W. E., 1898-
"Buku yang berjudul "Elsevier's dictionary of metallurgy and metal working" ini merupakan sebuah kamus metalurgi."
Amsterdam: Elseviers Scientific Publishing Company, 1978
R 669.003 CLA e
Buku Referensi  Universitas Indonesia Library
cover
Dea Anggraheni Pusparasmi
"Paduan titanium Ti6Al4V merupakan material yang memiliki kombinasi sifat mekanik yang diperlukan untuk implan seperti keuletan yang baik, ketahanan korosi yang tinggi dan biokompatibilitas yang baik, sehingga banyak digunakan sebagai material untuk aplikasi implan biomedis. Salah satu metode yang saat ini banyak digunakan untuk memproduksi implant Ti6Al4V dengan menggunakan proses metal injection molding (MIM). Proses MIM banyak digunakan karena dapat memproduksi part dengan lebih efektif, dan biaya produksi yang lebih murah. Salah satu faktor penting dalam proses MIM adalah preparasi feedstock yang baik serta menentukan parameter proses yang optimum untuk mencegah terjadinya pembentukan lapisan oksida TiO2 pada hasil MIM karena akan mempengaruhi sifat mekanis paduan. Penelitian ini bertujuan untuk mengetahui pengaruh proses parameter pada setiap tahapan MIM terhadap hasil akhir produk injeksi. Feedstock Ti6Al4V diinjeksi pada suhu 200°C dan tekanan ±2100 psi kemudian dilakukan penghilangan binder dengan solvent debinding menggunakan n-heksana pada suhu 50°C selama 1, 2, dan 3 jam, dan dilanjut dengan thermal debinding pada 2 variasi atmosfer berbeda yaitu vakum dan argon dengan suhu 500°C selama 1 jam dan laju pemanasan 1°C/menit. Hasil brown part kemudian disintering dengan atmosfer argon pada suhu 1150°C, 1250°C, dan 1350°C selama 2 jam. Karakterisasi SEM-EDS, TGA, OM, densitas serta kekerasan dilakukan untuk menganalisis hasil sinter yang diperoleh. Fasa yang diperoleh dari hasil argon sintering adalah α dan β titanium. Densitas relatif yang diperoleh pada proses sintering sebesar 98.50%, 94.33%, dan 96.37% dengan nilai kekerasan berturut-turut 320, 315, dan 335 HV.

Titanium alloy Ti6Al4V is a material that has a good combination of mechanical properties for implants such as good ductility, high corrosion resistance and good biocompatibility, so it is widely used as a material for biomedical implant applications. One method that is currently widely used to produce Ti6Al4V implants is by using the metal injection molding (MIM) process. The MIM process is widely used because it can produce parts more effectively, and production costs are cheaper. One of the important factors in the MIM process is good feedstock preparation and determining the optimum process parameters to prevent the formation of a TiO2 oxide layer on the MIM product because it will affect the mechanical properties of the alloy. This study aims to determine the effect of the process parameters at each stage of the MIM on the final product injection. The Ti6Al4V feedstock was injected at a temperature of 200°C and a pressure of ±2100 psi then removed the binder with solvent debinding using n-hexane at a temperature of 50°C for 1, 2, and 3 hours, and continued with thermal debinding at 2 different atmosphere variations, namely vacuum and argon at a temperature of 500°C for 1 hour and a heating rate of 1°C/minute. The resulting brown part was then sintered in an argon atmosphere at temperatures of 1150°C, 1250°C, and 1350°C for 2 hours. Characterization of SEM-EDS, TGA, OM, density and hardness was carried out to analyze the sintered results obtained. The phases obtained from argon sintering are and titanium. The relative densities obtained in the sintering process were 98.50%, 94.33%, and 96.37% with hardness values of 320, 315, and 335 HV, respectively."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Temmy
"Selama ini material logam sangat dibutuhkan dalam kehidupan didunia ini. Bahkan material logam telah dipakai sekitar ribuan tahun yang lalu sehingga tidak mengherankan bahwa pada abad ke - 21 ini teknologi-teknologi dalam pembuatan material logam telah banyak bermunculan. Beberapa dasa warsa ke belakang, telah timbul suatu pemikiran dari para ahli bahwa diperlukan suatu material yang memiliki sifat lebih baik daripada logam dimana baik dalam keuatan sifat fisis, sifat mekanis serta efisien dalam proses pembuatannya, salah satunya adalah material komposit."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S41395
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dharmanto
"Proses atomisasi logam biasanya menghasilkan serbuk dengan butiran partikel berukuran lebih dari 200 μm, berbentuk tidak teratur. Selain itu, saat ini diperlukan juga serbuk logam dengan densitas rendah untuk aplikasi PM, supaya menghasilkan modulus elastisitas rendah. Hal tersebut dikarenakan adanya masalah modulus elastisitas logam jauh lebih besar daripada modulus elastisitas tulang alami (10 hingga 30 GPa) mendekati modulus elastisitas tulang alami. Melihat masalah tersebut maka dibutuhkan reaktor fabrikasi serbuk logam yang tepat, yang mampu untuk memproduksi serbuk logam dengan butiran partikel berbentuk bulat berpori berukuran kurang dari 200 μm dan berbiaya rendah. Maka pada penelitian ini, sebuah alat atomisasi plasma berbiaya rendah dirancang dan dibuat sebagai solusi untuk masalah biaya tinggi, masalah bentuk yang tidak beraturan pada hasil atomisasi plasma, dan masalah modulus elastisitas logam jauh lebih besar daripada modulus elastisitas tulang alami. Kemudian dibuat atomisasi plasma dengan daya sumber energi kurang dari 7 kVA. Prototipe mesin atomisasi telah berhasil dibuat dapat memproduksi serbuk logam dengan butiran partikel berbentuk bulat berpori dengan ukuran <200 μm dengan teknologi plasma berbiaya rendah. Prototipe mesin atomisasi plasma memiliki chamber dengan ukuran diameter 500 mm dengan tinggi 1000 mm, yang dilengkapi dengan dua buah siklon, dua buah scrubber basah, dua buah saringan dan kompresor. Pembangkit plasma memiliki tegangan keluaran rata-rata kurang lebih 102 volt, dengan arus yang dapat diatur dari 20 A sampai dengan 60 A. Pada variasi kecepatan umpan 2 mm3/detik, 3 mm3/detik, dan 4 mm3/detik pada ukuran serbuk <200μm masing masing adalah 4.90%, 5.20%, dan 5.35%, dimungkinkan tidak berpengaruh signifikan terhadap hasil jumlah serbuk ukuran <200μm. Dimana pencapaian jumlah hasil ukuran serbuk <200μm dibagi dengan jumlah seluruh hasil produksi (Yield Rasio) masing masing adalah 5.15%, 5.48%, dan 5.65%. Jumlah serbuk tertinggi dihasilkan dari variasi arus 35 A, diikuti dengan arus 30 A dan 25 A, yaitu masing masing adalah 18.30%, 14.30%, dan 11.35%. Hal tersebut menunjukkan bahwa semakin tinggi arus yang digunakan maka akan menghasilkan serbuk dengan ukuran <200 μm semakin banyak. Dimana pencapaian jumlah hasil ukuran serbuk <200μm dibagi dengan jumlah seluruh hasil produksi (Yield Rasio) masing masing berurutan adalah 22.49%, 16.69%, dan 12.80%. Jumlah serbuk pada ukuran partikel <200 μm untuk tekanan 1.5 bar, tekanan 2.0 bar, dan tekanan 2.5 bar masing-masing adalah 8.05%, 23.60%, dan 17.50%. Ada kemungkinan bahwa ini bisa terjadi karena untuk memecah logam cair menjadi tetesan butiran ukuran yang lebih kecil, diperlukan energi kinetik dari tekanan gas yang lebih besar. Sehingga tekanan gas yang besar dapat menghasilkan ukuran partikel yang lebih kecil dibandingkan dengan tekanan gas yang kecil. Sedangkan pada tekanan 2.5 bar terjadi penurunan jumlah pada ukuran serbuk <200 μm, hal tersebut dimungkinkan karena pada tekanan 2.5 bar terjadi menurunkan lama waktu kontak lelehan logam pada nosel atau panas yang kontak dengan lelehan logam berkurang. Hasil serbuk dari desain baru atomisasi conduit plasma telah dianalisis menggunakan desain eksperimen untuk mendapatkan nilai optimal dari distribusi ukuran partikel serbuk logam. Optimalisasi parameter terbaik untuk mendapatkan distribusi ukuran partikel minimum dalam serbuk logam. Nilai minimum dalam hasil distribusi ukuran partikel D10, D50, dan D90 dari optimasi adalah 71 μm, 325 μm, dan 534 μm, dan nilainya dapat dicapai dengan menggabungkan parameter arus dan faktor tekanan 45 A dan 2.5 bar. Hasil persamaan regresi dapat digunakan sebagai referensi dalam pengoperasian alat atomisasi plasma saluran dalam memperoleh distribusi ukuran partikel tertentu yang dibutuhkan. Porositas serbuk logam dari hasil atomisasi plasma desain baru telah dianalisis menggunakan desain eksperimen. Analisis desain eksperimen untuk mendapatkan nilai porositas serbuk logam yang optimal. Variasi arus 45 A memiliki jumlah porositas yang lebih kecil dibandingkan dengan jumlah porositas pada variasi arus 40 A atau 35 A. Permukaan partikel serbuk pada variasi 45 A memiliki permukaan yang lebih halus dibandingkan permukaan partikel serbuk. dengan variasi 40 A dan 35 A. Serbuk logam dari hasil arus 45 A memiliki bentuk bulat yang lebih sempurna dibandingkan arus 40 A atau 35 A. Alat atomisasi conduit plasma dengan diameter lubang conduit 4 mm dan panjang 100 mm, jika digunakan untuk menghasilkan Ti Alloy maka arus yang disarankan adalah diatas 45 A dengan tegangan 102 V. Penelitian ini telah berhasil membuat bahan baku logam ringan densitas 4.11 ±0.32 g/cm3 dengan modulus elastisitas kompresi didapat rata-rata 11.05 ±2.9 GPa dari bahan serbuk stainless steel sebagai salah satu contoh aplikasi produk akhir dari hasil serbuk atomisasi plasma.

The metal atomization process usually produces powders with particles of more than 200 m in size, irregular in shape. In addition, currently also required metal powders with low density for PM applications in order to produce a low modulus of elasticity, because the modulus of elasticity of metal is much larger than the modulus of elasticity of natural bone (10 to 30 GPa), approaching the modulus of elasticity of natural bone. Seeing these problems, we need an appropriate metal powder fabrication reactor, which is capable of producing metal powders with spherical, porous particles measuring less than 200 m and low cost. So in this study, a low-cost plasma atomizer is designed and manufactured as a solution to the problem of high cost, the problem of irregular shape in the plasma atomization result, and the problem of the modulus of elasticity of metals being much larger than the modulus of elasticity of natural bone. Then made atomization plasma with an energy source of less than 7 kVA. The atomization machine prototype has been successfully manufactured to produce metal powders with spherical porous particles of <200 m in size using low-cost plasma technology. The plasma atomizer prototype has a chamber with a diameter of 500 mm and a height of 1000 mm, which is equipped with two cyclones, two wet scrubbers, two filters, and a compressor. The plasma generator has an average output voltage of approximately 102 volts, with a current that can adjust from 20 A to 60 A. The raw material is in the form of a wire with a diameter of 1.6 mm. The feed speed variation of 2 mm3/second, 3 mm3/second, and 4 mm3/second at powder size <200μm, which are 4.90%, 5.20%, and 5.35% respectively, it is possible that it has no significant effect on the yield of powder size <200μm. The total yield of powder size <200μm divided by the total yield (Yield Ratio) is 5.15%, 5.48%, and 5.65%, respectively. The highest amount of powder was produced from the variation of the current 35 A, followed by the current 30 A and 25 A, which were 18.30%, 14.30%, and 11.35%, respectively. This shows that the higher the current, the more powders with a size of <200 m will be produced. Where the achievement of the total yield of powder size <200μm divided by the total number of production results (Yield Ratio), respectively, were 22.49%, 16.69%, and 12.80%, respectively. The pressure variation of 1.5 bar pressure, 2.0 bar pressure, and 2.5 bar pressure at powder size <200 μm were 8.05%, 23.60%, and 17.50%, respectively. It is possible that this could happen because to break the molten metal into smaller droplets, needs the kinetic energy of the gas pressure is greater so that large gas pressure can produce a smaller particle size compared to small gas pressure. While at a pressure of 2.5 bar there is a decrease in the amount of powder size <200 m, this is possible because, at a pressure of 2.5 bar, there is a decrease in the contact time of the molten metal on the nozzle or the heat in contact with the molten metal decreases.. The powder yield from the new design of the channel plasma atomization has been analyzed using the experimental design to obtain the optimal value of the metal powder particle size distribution. Optimization of the best parameters to obtain the minimum particle size distribution in metal powders. The minimum values in the D10, D50, and D90 particle size distribution results from the optimization are 71 μm, 325 μm, and 534 μm, and these values can be achieved by combining current parameters and pressure factors of 45 A and 2.5 bar. The results of the regression equation can be used as a reference in the operation of the channel plasma atomizer in obtaining the required particle size distribution. The porosity of the metal powder from the plasma atomization of the new design was analyzed using a design of experimental. The design of experimental analysis to obtain optimal porosity values for metal powders. The current variation of 45 A has a smaller amount of porosity than the amount of porosity at the current variation of 40 A or 35 A. The surface of the powder particles in the 45 A variation has a smoother surface than the surface of the powder particles. With variations of 40 A and 35 A. The metal powder of current 45A has a more perfect spherical shape than the current 40 A or 35 A. A conduit plasma atomizer with a conduit hole diameter of 4 mm and a length of 100 mm, if used to produce Ti Alloy, the recommended current is above 45 A with a voltage of 102 V. This research was succeeded in making light metal raw materials with a density of 4.11 ±0.32 g/cm3 with an elastic modulus of compression obtained an average of 11.05 ±2.9 GPa from stainless steel powder as an example of the application of the final product from plasma atomization powder."
Depok: Fakultas Teknik Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Setiyaningrum
"Pengembangan material biologis mampu luruh alami sebagai aplikasi perancah pembuluh darah telah banyak dilakukan. Pada penelitian sebelumnya Fe-Mn-C berstruktur busa dengan 5% kalium karbonat (K2CO3) berhasil dikembangkan dengan fasa austenit dan laju degradasi yang cukup baik. Namun kandungan karbon yang terbentuk masih sangat tinggi dengan membentuk fasa grafit (C) menyebabkan kekerasan yang terlalu tinggi dan meninggalkan sifat magnet yang akan mengganggu saat pemeriksaan MRI (Magnetic Resonance Imaging). Variasi komposisi unsur karbon (0%, dan 0,5%C) dilakukan untuk memperbaiki sifat mekanik dan membentuk fasa austenit sepenuhnya guna diperoleh sifat yang non magnetic. Pemaduan mekanik material serbuk dilakukan dengan metode rotary mixing dengan komposisi target Fe-35Mn dan Fe-35Mn-0,5C. Sinter dilakukan pada temperatur 850oC selama 3 jam dan dilanjutkan dengan sinter dekomposisi pada temperatur 1100oC selama 1,5 jam di atmosfer inert gas Nitrogen (N). Hasil sinter kemudian dilakukan karakterisasi sifat fisik, kimia, mekanik, dan perilaku korosinya. Fasa yang terbentuk adalah fasa austenit, dan fasa mangan oksida dengan laju degradasi yang baik dan tidak bersifat magnet.

Development of degradable biomaterial for coronary stent applications has been carried out. Degradable biomaterial Fe-Mn-C with foam structure with 5% potassium carbonate (K2CO3) was successfully developed with austenite phase and good degradation rate. However, the carbon content still too high and produce graphite phase (C) causing the hardness becomes too high and will produce the magnetic properties that interfere with the examination process of MRI (magnetic resonance imaging). Variations of carbon composition (0%, and 0.5% C) has been done to improve mechanical properties and form a fully austenite phase to produce non-magnetic properties. Mechanical alloying of powder material done by rotary mixing method with a target composition of alloy are Fe-35Mn and Fe-35Mn-0,5C. Sintering was performed in inert gas atmosphere of nitrogen (N) at temperature of 850oC for 3 hours and continued at 1100oC for 1.5 hours. Several characterization was performed on sintered sampel such as physical, chemical, and mechanical properties also degradation behavior. Austenite and manganese oxide phase with a good rate of degradation and not magnetic properties are formed in this degradable biomaterial Fe-Mn-C.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56521
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Nagieb Alaydrus
"Metode umum untuk menghasilkan produk aluminium merupakan metode pengecoran. Pada metode pengecoran, aluminium cair dapat dengan mudah bereaksi dengan oksigen serta membentuk inklusi oksida. Pemberian fluks merupakan metode umum yang digunakan untuk menghilangkan inklusi dari lelehan logam serta untuk memastikan kemurnian dari aluminium cair. Sebagian besar fluks garam dibuat berdasarkan komposisi ekuimolar antara NaCl dan KCl. Namun, sangat disayangkan fluks yang terdapat di pasaran merupakan produk impor. Maka pada penilitian ini akan dilakukan pembuatan fluks berbahan dasar garam lokal yakni Na2SO4 dan Nacl. Hasil dari penelitian ini adalah untuk fluiditas dari recovered aluminium dengan fluks pada temperatur 660oC dan 620oC berturut turut adalah 1 Kg dan 0,87 Kg, sementara untuk fluiditas aluminium tanpa fluks pada temperatur 660oC dan 620oC berturut turut adalah 0,34 Kg dan 0,18 Kg. Hasil uji tarik menunjukkan bahwa untuk recovered aluminium dengan fluks pada temperatur 660oC dan 620oC berturut turut memiliki kekuatan tarik rata rata sebesar 174,45 MPa dan 176,77 MPa, sementara untuk aluminium tanpa fluks pada temperatur 660oC dan 620oC berturut turut memiliki kekuatan tarik rata rata sebesar 148,4 MPa dan 157,2 MPa. Untuk data hasil uji impak menunjukkan aluminium dengan fluks pada temperatur 660oC dan 620oC berturut turut memiliki kekuatan impak rata rata sebesar 13 J dan 18 J, sementara untuk aluminium tanpa fluks pada temperatur 660oC dan 620oC berturut turut memiliki kekuatan tarik rata rata sebesar 8 J dan 12 J. Sehinga, dapat disimpulkan bahwa penggunaan cleaning flux pada aluminium dapat mengurangi inklusi oksida dan meningkatkan sifat mekanik dari aluminium AC3A.

A common method for producing aluminum products is the casting method. In the casting method, molten aluminum can easily react with oxygen and form oxide inclusions. Fluxing is a common method used to remove inclusions from molten metal and to ensure the purity of molten aluminum. Most of the salt fluxes are made based on the equimolar composition between NaCl and KCl. However, it is unfortunate that the flux on the market is an imported product. So in this research, a flux based on local salts will be made, with Na2SO4 and Nacl. The result of this research is that the fluidity of recovered aluminum with flux at temperatures of 660oC and 620oC is 1 Kg and 0.87 Kg, respectively, while the fluidity of aluminum without flux at temperatures of 660oC and 620oC is 0.34 Kg and 0.18, respectively. kg. The tensile test results show that recovered aluminum with flux at temperatures of 660oC and 620oC has an average tensile strength of 174.45 MPa and 176.77 MPa, respectively, while aluminum without flux at a temperature of 660oC and 620oC has an average tensile strength, respectively, of 148.4 MPa and 157.2 MPa. The impact test data shows that aluminum with flux at a temperature of 660oC and 620oC has an average impact strength of 13 J and 18 J, respectively, while aluminum without flux at a temperature of 660oC and 620oC has an average impact strength of 8 J and 12 J, respectively. Thus, it can be concluded that the use of cleaning flux on aluminum can reduce oxide inclusions and improve the mechanical properties of AC3A aluminum."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>