Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11896 dokumen yang sesuai dengan query
cover
Dian Anggraeni
Depok: Universitas Indonesia, 2010
S27834
UI - Skripsi Open  Universitas Indonesia Library
cover
"Pada tugas akhir ini akan dibahas suatu generalisasi dari distribusi Dirichlet yang
disebut Dirichlet process. Distribusi Dirichlet merupakan distribusi atas vektor,
dimana elemen dari vektor tersebut merupakan bilangan-bilangan diantara 0 dan 1
dan dapat dianggap sebagai nilai probabilitas. Sehingga, distribusi Dirichlet dapat
dianggap sebagai distribusi atas vektor probabilitas. Sedangkan Dirichlet process
didefinisikan sebagai suatu distribusi atas probability measure atau disebut juga
dengan probability set function. Untuk suatu ruang terukur  ,  B , probability
measure P yang didefinisikan pada -algebra Bdisebut berdistribusi Dirichlet
process jika untuk suatu partisi terukur B1, B2, …, Bk dari , vektor random
(P(B1), P(B2), …, P(Bk)) berdistribusi Dirichlet. Probability measure P tersebut
dapat dianggap sebagai suatu distribusi probabilitas di . Dan untuk
menghasilkan barisan variabel random yang berdistribusi P dimana P berdistribusi
Dirichlet process, digunakan suatu teori barisan Polya.Bentuk eksplisit dari
probability measure P yang berdistribusi Dirichlet process dijelaskan melalui the
Sethuraman construction of Dirichlet process. Pada tugas akhir ini, penerapan dari
Dirichlet process adalah dalam penentuan distribusi prior pada regresi biner
semiparametrik."
Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gina Nuryani Putri
"Analisis regresi digunakan untuk mengetahui hubungan antara satu variabel respon dan satu atau lebih variabel penjelas. Ketika variabel respon berupa data count yaitu data yang berupa bilangan bulat non-negatif, analisis regresi yang sering digunakan adalah analisis regresi Poisson. Pada regresi Poisson terdapat asumsi kesamaan nilai mean dengan nilai variansinya. Dalam data count sering didapati kondisi dimana nilai variansi lebih besar dari nilai meannya atau disebut overdispersi. Pada data yang overdispersi, regresi Poisson kurang tepat jika digunakan karena nilai standard error dari taksiran parameter yang dihasilkan akanunderestimate sehingga beresiko memberikan kesimpulan yang tidak tepat. Model regresi Poisson-Inverse Gaussian dapat digunakan pada data count yang overdispersi dan memiliki tail panjang. Penaksiran parameter model regresi Poisson-Inverse Gaussian menggunakan metode maksimum likelihood dan solusi dari fungsi log -likelihood-nya menggunakan pendekatan numerik yaitu Newton-Raphson. Uji kesesuaian model yang digunakan mencakup statistik pseudo R-Squared, uji rasio likelihood, dan Uji Wald.

Regression analysis is used to investigate the relationship between one response variable and one or more regressor variables. If the response variable is count data, that has non negative integer value, the regression analysis that usually used is Poisson Regression. Poisson regression has an assumption that mean of response variable equal to its variance. On count data frequently found that the variance is greater than mean, or called overdispersion. On overdispersion case, poisson regression is inconvenient to used because it may underestimate the standard error of regression parameters and consequently it risk to give misleading inference. Poisson Inverse Gaussian regression model can be used on overdispersion and long tail count data. Parameter estimation of Poisson Inverse Gaussian Regression Model can be obtained through the maximum likelihood method and the solution of log likelihood function may be solved by using numerical method called Newton Raphson. Goodness of fit testing of this model includes pseudo R Squared, rasio likelihood test, and Wald test."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68659
UI - Skripsi Membership  Universitas Indonesia Library
cover
Olivia Iolana
"Analisis data lifetime sangat penting dalam berbagai bidang ilmu pengetahuan seperti biomedis, teknik, dan ilmu kemasyarakatan. Pemodelan data tersebut dilakukan dengan menggunakan fungsi hazard dari distribusi lifetime seperti distribusi eksponensial, Weibull, lognormal, dan juga gamma. Namun, keempat distribusi tersebut tidak dapat memodelkan fungsi hazard berbentuk bathtub. Padahal, fungsi hazard berbentuk bathtub adalah yang paling sering ditemukan dalam kehidupan nyata. Oleh karena itu, akan dibentuk distribusi generalized Lindley yang lebih fleksibel dalam memodelkan fungsi hazard. Distribusi tersebut merupakan perumuman dari distribusi Lindley dengan menggunakan transformasi exponentiation. Kemudian, karakteristik-karakteristik dari distribusi generalized Lindley juga akan ditelusuri. Selanjutnya, analisis bentuk dari fungsi hazard akan menunjukkan bahwa distribusi generalized Lindley dapat memodelkan data dengan fungsi hazard yang berbentuk monoton naik, monoton turun, dan juga bathtub. Setelah itu, penaksiran parameter distribusi generalized Lindley akan dilakukan dengan metode yang paling umum digunakan yaitu metode maximum likelihood. Simulasi dengan membangkitkan data menggunakan software juga akan dilakukan dengan bantuan metode Newton-Raphson untuk melihat penaksiran parameter dari distribusi generalized Lindley.

Analysis of lifetime data is very important in various fields such as biomedical science, engineering, and social science. The modelling of lifetime data is done by using hazard function of lifetime distributions such as exponential, Weibull, lognormal, and gamma distribution. However, these four distributions cannot model data with bathtub-shaped hazard function even though it is the one mostly found in real life situation. Therefore, more flexible distribution called generalized Lindley distribution is introduced to model hazard function. The distribution is created by using transformation called exponentiation to generalize the Lindley distribution. Afterwards, some characteristics of generalized Lindley distribution will be discussed. Analysis of the hazard function will show that generalized Lindley distribution can models data with increasing, decreasing, and bathtub-shaped hazard function. In addition, parameter estimation of the distribution will be done by the usual method which is maximum likelihood estimation. Lastly, simulation using software-generated data will be displayed with help from Newton-Raphson numerical method to see the parameter estimation of generalized Lindley distribution."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hamdi Ranuharja
"Pemodelan jumlah klaim mengklaim salah satu topik paspor adalah praktik lapangan. masalah ini sering ditemukan dalam model ingthataatais persebaran. Poisson dributiontion yang digunakan dalam pemodelan sumber klaim tidak dapat digunakan sebagai fakta overproperti penyebaran.Oleh karena itu, distribusi yang distandarisasi di luar negeri dapat dimanfaatkan
jumlah klaim yang mengklaim pengungkapan properti yang dibutuhkan. Dalam tulisan ini, analternatif menerima distribusi yang dihasilkan, yaitu Distribusi Umum Biomial Negatif-Negatif Distribusi adalah distribusi distribusi negatif negatif dan distribusi Membalik Gaussie dan distribusi metameterisasi pada parameter negatif Distribusi binomial yaitu p = exp (), di mana nilai variabel acak acak yang didistribusikan Inverse Gaussian. Distribusi eksternal ini adalah unimodal, hasa tebal thailand hasa positif menghasilkan kewajiban koefisien. Dalam tesis tingkat bawah, kemungkinan serangan dan komitmen faktorial dari distribusi NB-IG yang didistribusikan. Berarti, varians, skewness danurturtasthasic properties ofNB-IG distribusi disajikan dan parameter pengujian diperlakukan melalui survival maksimum maksimum metode estimasi. Kepenuhan distribusi NB-IG diilustrasikan oleh data nyata set.

One topic of passports is field practice. this problem is often found in modeling the data distribution. tion used in modeling claims sources cannot be used as a fact of overproperty distribution. Therefore, standardized distributions abroad can be used the number of claims claimed In this paper, accept the resulting distribution, namely General Negative-Negative Biomial Distribution, Distribution is negative negative distribution and Gaussie Reverse distribution and metameterization distribution on negative parameters, binomial distribution ie p = exp (), where the variable value Varies Published InverseGaussian. This external distribution is immunodal, Thailand has a positive potential to produce the coefficient obligation. In the lower-level thesis, attacks and factorial commitments from the distributed NB-IG distribution are published. Means, variants, skewness and strictness of the properties of NB-IG distribution are presented and test parameters are approved through maximum maximum survival estimation method. The fullness of the NB-IG distribution is illustrated by real data sets."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Grothendieck, A.
New York: Gordon and Breach, Science Publishers, 1975
515.73 GRO t
Buku Teks  Universitas Indonesia Library
cover
Constantinescu, F.
Oxford: Pergamon Press, 1980
530.15 CON d
Buku Teks  Universitas Indonesia Library
cover
Jason Wijaya
"Dalam upaya untuk mengendalikan besarnya kerugian, memodelkan severitas klaim merupakan salah satu cara yang sering dilakukan oleh perusahaan asuransi. Terdapat beberapa cara untuk memodelkan severitas klaim, salah satunya dengan generalized linear model. Akan tetapi fakta sederhana bahwa setiap pemegang polis itu tidak sama sering diabaikan karena hasil yang diperoleh hanya disajikan untuk “rata-rata” pemegang polis. Potensi variabilitas ini yang tercermin pada data asuransi dapat diidentifikasi dengan mengelompokkan pemegang polis ke dalam kelompok yang berbeda. Sehingga dari perilaku yang berbeda pada masing-masing kelompok memungkinkan perusahaan asuransi mengembangkan strategi untuk mengendalikan besarnya kerugian. Pada praktiknya, model yang sering digunakan untuk pengelompokan adalah model finite mixture, dengan setiap kelompok dimodelkan dengan fungsi kepadatan probabilitasnya (pdf) sendiri. Salah satu keluarga model finite mixture yang fleksibel untuk vektor acak yang terdiri dari variabel respon dan satu set kovariat yang disesuaikan dengan distribusi bersamanya adalah cluster-weighted model (CWM). CWM merupakan kombinasi linear antara distribusi marjinal kovariat dan distribusi bersyarat dari respons yang diberikan kovariat. Distribusi bersyarat pada CWM diasumsikan milik keluarga eksponensial dan kovariatnya diperbolehkan tipe campuran yaitu diskrit dan kontinu (diasumsikan gaussian). Selanjutnya, model dicocokkan ke dalam data (fitting the model) menggunakan Maximum likelihood estimation (MLE) untuk menaksir parameter model dengan algoritma ekspektasi-maksimalisasi (EM). Pemilihan model terbaik dievaluasi dari skor akaike information criterion (AIC) dan bayesian information criterion (BIC). Permasalahan penentuan jumlah cluster diselesaikan secara bersamaan dengan memilih model terbaik. Pada akhirnya, CWM dapat digunakan untuk meningkatkan pemahaman tentang perilaku pemegang polis dan karakteristik risikonya yang dihasilkan di setiap cluster. Penerapan metode ini diilustrasikan pada data asuransi mobil di Prancis.

In an effort to control the amount of loss, modeling the severity of claims is one way that is often done by insurance companies. There are several ways to model claim severity, one of which is a generalized linear model. However, the simple fact that every policyholder is not the same is often overlooked because the results obtained are only presented for the "average" policyholder. This potential for variability reflected in insurance data can be identified by classifying policyholders into different groups. So that the different behavior of each group allows insurance companies to develop strategies to control the amount of losses. In practice, the model often used for grouping is the finite mixture model, with each group being modeled with its own probability density function (pdf). One of the flexible finite mixture model families for random vectors consisting of a response variable and a set of covariates adjusted for their common distribution is the cluster-weighted model (CWM). CWM is a linear combination between the marginal distribution of the covariates and the conditional distribution of the responses given by the covariates. The conditional distribution on CWM is assumed to belong to the exponential family and the covariates are allowed mixed types, namely discrete and continuous (assumed to be gaussian). Next, the model is fitted to the data (fitting the model) using Maximum likelihood estimation (MLE) to estimate the model parameters with the expectation-maximization (EM) algorithm. Selection of the best model was evaluated from the Akaike information criterion (AIC) and Bayesian information criterion (BIC) scores. The problem of determining the number of clusters is solved simultaneously by selecting the best model. In the end, CWM can be used to increase understanding of policyholder behavior and the resulting risk characteristics in each cluster. The application of this method is illustrated in data on auto insurance in France."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Prakasa Rao, B.L.S.
Boston: Academic Press , 1992
519.24 PRA i
Buku Teks  Universitas Indonesia Library
cover
Collett, D.
London: Chapman and Hall, 1991
519.538 COL m
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>