Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 194698 dokumen yang sesuai dengan query
cover
Mohamad Jeferi
"Bentonit merupakan mineral alimuna siilkat terhidrat dengan beberapa
logam alkali dan alkali tanah yang terikat didalamnya. Ion-ion logam tersebut
dapat diganti oleh kation lain dan dapt menyerap air secara reversibel.
Struktur bentonit sendiri terdiri dari tiga lapis atau berbentuk pebandingan 2 :
1, yaitu tetrahedral-oktahedral-tetrahedral (T-O-T). Secara umum bentonit
dibagi atas dua golongan yaitu natrium bentonit dan kalsium bentonit dengan
rumus {A\^\ fe^\ Cr®^ Mn^^) (Aly^'+ Si4.y^^) OioCOH; F)2 Xo.ss-
Penelitian ini bertujuan untuk mempelajari kemampuan bentonit alam
Karangnunggal yang diaktivasi dalam rangka untuk menyerap ion logam Ni^"",
Co^'^ dan Gd^"^ di dalam air.
Untuk mengetahui daya serapnya, bentonit tersebut divariasikan
dengan 3 perlakuan 1. Bentonit alam Karangnunggal tanpa aktivasi
2. Bentonit alam Karangnunggal diaktivasi dengan H2SO4 0,025 M; 0,05
M; 0,10 M; 0,25 M; 0.5 M; 1,0 M; 1,5 M; 2,0 M dan 2,5 M.
3. Bentonit alam Karangnunggal diaktivasi dengan pemanasan 150 °C:
200 °C: 250 °C; 300 °C dan 500 °C.
Masing-masing bentonit diuji daya serapnya terhadap ion logam Ni^'^,
Co^"" dan Cd^"" dengan pengadukan menggunakan shaker selama 120 menit.
selanjutnya diukur adsorpsinya dengan menggunakan alat AAS. Selain itu
untuk mengetahui adanya perubahan struktur dari bentonit dilakukan dengan
MU.IK PEHPUSTfiKAAN
menggunakan alat XRD. _____F_MIPA-U I
Dari percobaan yang dilakukan diperoleh hasil adsorpsi maksimal
pada bentonit alam Karangnunggal dengan aktivasi asam sulfat 0,025 M dan
aktivasi pemanasan pada suhu 150-200 °C jika dibandingkan dengan
bentonit tanpa aktivasi. Ketika Ni^"" 0,1703 mek dicampurkan dengan 0,5 g
bentonit aktivasi pemanasan, Ni^"" yang terserap mencapai 0,1360 mek/g
(200 °C) dan 0,1549 mek/g (0,025 M), untuk Co^"^ 0,1697 mek/g yang
terserap mencapai 0,2111 mek/g (150 °C) dan 0,1844 mek/g (0,025 M) serta
untuk Cd^"" 0,0890 mek yang terserap mencapai 0,1218 mek/g (150 °C) dan
0,1159 mek/g (0,025 M).
Selanjutnya bentonit yang menyerap maksimal dilakukan varigsi
terhadap pH buffer phosfat 4, 5 dan 6. Didapat hasil untuk Ni^" yang terserap
0,1023 mek/g (0,025 M) dan 0,0971 mek/g (150 °C), untuk yang terserap 0,1439 mek/g (0,025 M) dan 0,1575 mek/g (150 °C) serta untuk yang
terserap 0,1615 mek/g (0,025 M) dan 0,1615 mek/g (150 °C)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2003
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Indra Kurniawan
"Bentonit adalah nama dagang untuk lempung monmorirdhitYdng-dapat
digunakan sebagai penyerap katlon-kation logam. AktlvasI asam dan aktivasi
pemanasan dilakukan dengan maksud memperoleh bentonit dengan daya
serap terhadap kation yang lebih besar. Variasi aktivasi asam dilakukan dari
konsentrasi 0,03 - 1,2 M HOI. Aktivasi pemanasan dilakukan dengan
memvariasikan temperatur 200-600 °C. daya serap bentonit yang lebih besar
diperoleh pada aktivasi 0,03 M HOI dan aktivasi dengan pemanasan pada
temperatur 200 °C. pemanasan 400 °G dan 600 °C mengakibatkan daya
serap bentonit terhadap logam cenderung berkurang. Penggunaan buffer
asetat mengakibatkan daya serap terhadap logam menjadi relatif kecil"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Simanullang, Guarda
"Bentonit adalah nama dagang untuk lempung monmorilonit (smektit)
yang dapat digunakan sebagai adsorben, zat pemutih, katalisator. Bentonit
alam karangnunggal merupakan jenis kalsium bentonit mempunyai KTK
(Kapasitas Tukar Kation) yang relatif besar (80-140 mek/IOOg). Aktivasi asam
dan aktivasi pemanasan dilakukan dengan maksud memperoleh bentonit
dengan nilai KTK yang lebih besar. Aktivasi asam divariasikan dari
konsentrasi 0,025-2,5 M H2SO4, aktivasi pemanasan divariasikan 100-500°C.
KTK yang lebih besar dari bentonit tanpa aktivasi diperoleh pada aktivasi
0,025 M H2SO4 dan aktivasi pemanas'anlOO °C yaitu 47,41 mek/IOOg dan
48,82 mek/100g. Larutan (50 ppm), Zn^^ (50 ppm) diadsorpsi secara optimum oleh bentonit aktivasi 0,025 H2SO4 tetapi Mn^ (50 ppm) diadsorpsi
secara optimum oleh bentonit aktivasi 0,25 M H2SO4. Aktivasi diatas 100 °C
mengakibatkan adsorpsi bentonit terhadap larutan logam cenderung
berkurang. Grafik adsorpsi bentonit terhadap logam yang dibuffer
menunjukkan pada pH 5-pH 6 adalah kondisi terbaik penyerapan larutan
logam. Analisa XRD memperlihatkan tidak ada perubahan yang berarti
terhadap sudut difraksi (0) dan jarak pisah bidang kisi pemantui (d) sehingga
dapat dikatakan tidak terjadi kerusakan struktur bentonit"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2003
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agus Firmansyah
"Air alami merupakan sistem elektrolit heterogen yang mengandung sejumlah besar spesi organik dan anorganik. Logam runutan dapat memasuki perairan dan terlibat baik secara fisik maupun kimia. Proses distibusi logamlogam runutan tersebut dipengaruhi oleh interaksi baik secara fisika maupun kimia. Dalam perairan logam dapat tiadir sebagai ion logam yang terkoordinasi dengan molekul air maupun membentuk kompleks dengan ligan.
Salah satu alternatif kemungkinan penanganan limbati cair yang tercemar adaiah dengan cara adsorpsi ion-ion logam oleh bentonit, yang merupakan mineral alam. Bentonit telah banyak diteliti diantaranya untuk menyerap ion logam dalam perairan, sebagai penyerap pestisida, sebagai bahan pemucat pada pemumian CPO, dan penyerapan polimer kationik dalam perairan.
Dalam penelitian ini diteliti penyerapan kompleks logam Co-tanin dengan menggunakan bentonit yang diaktivasi dengan asam. Tujuannya adaiah untuk membandingkan penyerapan antara ion Co2+ dalam bentuk kompleks dengan ion Co2+ bebas dalam pelarut air.
Bentonit diaktivasi menggunakan H2SO4 sebagai asam pengaktivasi, dengan variasi konsentrasi 0.2 M; 0.4 M; 0.6 M; 0.8 M dan 1.0 M. Aktivasi dengari menggunakan H2SO4 0.6 M menunjukkan penyerapan optimum dalam menyerap Co, baik dalam t)entuk Ion Co2+ maupun dalam bentuk kompleks dengan tanin.
Proses yang terjadi dalam penyerapan ion Co2+ melibatkan proses adsorpsi dan pertukaran Ration. Ion Co2+ diserap lebih ttaik dalam keadaan tidak terkomplekskan oleh bentonit. Proses aktivasi meningkatkan daya serap bentonit."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2003
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdul Juhri
"ABSTRAK
Zeolit merupakan mineral alumina silikat terhidrat dengan beberapa logam alkali dan alkali tanah yang terikat di dalamnya. Zeolit mempunyai sifat antara lain sangat berpori (pori-pori berukuran molekul) dan dapat mempertukarkan kation. Selain itu zeolit juga mudah dimodifikasi, salah
satunya yaitu dengan impregnasi menggunakan oksida logam.
Mn02 merupakan salah satu oksida logam yang dapat digunakan
untuk melapisi zeolit. MnOa terbentuk melalui reaksi oksidasi Mn(ll) yang
sebelumnya telah diadsorpsi teriebih dahulu ke dalam permukaan zeolit
dengan oksidator Kmn04.
Zeolit-Wln02 terbukti efektif dalam menurunkan konsetrasl dan Fe2+ dalam air tanah (Rodica, Pode/Rumania). Pene|itian ini mencoba memanfaatkan Zeolit-MnOz untuk menurunkan konsentrasi ion logam lam
misalnya dan Cd'" dalam air.
Zeolit-MnOz dibandingkan dengan Mn-Zeolit yang dikalsinasi pada
suhu 300 *'C selama 3 jam. Masing-masing zeolit dimasukkan ke dalam
kolom. lalu dialiri larutan Pb'" dan Cd2+ Efluen dianalisa dengan
menggunakan alat Spektroskopi Serapan Atom (SSA). Untuk mengetahui
terjadinya pelapisan pada permukaan zeolit dilakukan analisa dengan
menggunakan Difraksi Sinar-X (XRD).
Hasil penelitian menunjukkan bahwa terjadi penurunan konsentrasi
Pb2+ dan Cd2+ setelati dialiri melalui Mn-Zeolit (kalsinasi 300 °C) dan ZeoUt-
WlnOz (zeolit Tasikmalaya dan Bayah) dalam kolom. Ketika Cd 10 ppm
dialiri melalui Mn-Zeolit Bayah (kalsinasi 300 °C). Cd2+ yang tidaR teradsorp
mencapai 0,014 mg/g (Mn^^ terdesQrpsi=3.011 mg/g). Untuk Mn-Zeolit
Tasikmalaya Cd^^ yang tidak teradsorp 0,104 mg/g (Mn2+ terdesorpsi=7,198
mg/g). Sementara ketika dialiri Pb2+ 10 ppm. Pb2+ yang tidak teradsorpsi
mencapai 0 mg/g (Mn2+ terdesorpsi=1.878 mg/g) untuk Mn-Zeolit Bayah dan
0,031 mg/g (Mn2+ terdesorpsi=3,028 mg/g) untuk Mn-Zeolit Tasik.
Untuk MnOrZeolit Bayah dan Tasik pada efluen sudah tidak terdapat
*
lagi Pb2+ dan Cd2+. Ketika dialiri Cd2+ 10 ppm. konsentrasi Mn2+ yang
terdesorpsi adalah 0,695 mg/g MnOz-Zeotit Bayah dan 0,806 mg/g MnOz-
Zeolit Tasik. Ketika dialiri 10 ppm konsentrasi Mn2+ adalah 0.225 mg/g
MnOz-Zeolit Bayah dan 0,618 mg/g MnOz-Zeolit Tasik.
Dari hasil tersebut MnOa-Zeolit lebih baik dibandingkan Mn-Zeolit
(kalsinasi 300 °C), sedangkan MnO-Zeolit Bayah lebih baik dibandingkan
MnO-Zeolit Tasik. Hal ini terlihat dari konsentrasi Mn2+ yang masih terdapat dalam efluen.
Sementara dari hasil Difraksi Sinar-X terlihat adanya penurunan
intensitas relatif puncak-puncak utama kristal yang disebabkan oleh hadirnya
spesi mangan pada permukaan zeolit.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2003
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Komalasari Dewi
"Salah satu pemanfaatan bentonit adalah untuk penjernihan minyak dalam proses pemurnian minyak kelapa sawit (curah). Untuk memperoleh daya pemucatan yang maksimum diperlukan suatu kondisi optimum. Peningkatan kualitas daya serap, meliputi purifikasi (penghilangan karbonat, pengurangan kadar besi, pengurangan materi organik, serta fraksionasi) dan dilanjutkan dengan aktivasi (asam dan pemanasan). Variasi konsentrasi H2SO4 yang digunakan sebesar 0,8 M; 1,0 M; dan 1,2 M. Bentonit yang telah diberi perlakuan dikarakterisasi dengan XRD, XRF, dan FTIR. Analisis data XRD digunakan untuk mengetahui perubahan struktur pada kristal bentonit, XRF untuk mengetahui komposisi unsur, dan FTIR untuk mengetahui gugus fungsi. Berdasarkan hasil pengujian dan karakterisasi diperoleh efektivitas adsorpsi bentonit purifikasi sebesar 42,82%, raw bentonit sebesar 54,32%, bentonit tanpa purifikasi dan diaktivasi 0,8 M sebesar 63,29%, bentonit tanpa purifikasi dan diaktivasi 1,0 M sebesar 85,81%, bentonit tanpa purifikasi dan diaktivasi 1,2 M sebesar 79,69%."
Depok: Universitas Indonesia, 2007
S30631
UI - Skripsi Membership  Universitas Indonesia Library
cover
Didi Rustam
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2001
S29744
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rachmawaty
"Dl alam, mineral bentonit masih bercampur dengan mineral liat lainnya. Pemurnian bentonit alam dari pengotor- pengotor lainnya dapat dilakukan dengan cara fraksinasi sedimentasi berdasarkan waktu , dan hasilnya menujukkan persentase berat F1 (sedimentasi 15 menit) sebesar 58,05%, persentase berat F2 (sedimentasi 3 hari) sebesar 22,71 %, persentase berat F3 (sedimentasi 1 minggu) sebesar4,04 % dan sisanya persentase berat F4 sebesar 9,24 %, yang didapat dengan cara sisa fraksi bentonit yang diuapkan. Karakterisasi Ukuran partikel berdasarkan distribusi sebaran massa, menujukkan ukuran partikel^FI (23,75pm ± 17,54 pm ) > F2 (14,38pm ± 3,27 pm) > F3 A (2,51pm ± 2,17 pm) > F4 (14,38pm ± 3,27 pm). Penentuan komposisi kimia dengan menggunakan metode XRF, menujukkan perbandingan nilai Si/AI F1 (6,20) > F2 (5,53) > F3 (3,56) > F4 (3,45). Penentuan jenis mineral dengan metode XRD, menujukkan bahwa pada bentonit Ft dan F2 ketidakmurnlannya maslh dlpertahankan dengan hadirnya mineral chlorit dan quarsa, sedangkan untuk bentonit F3 dan F4 hanya menghasilkan minerat montmorilonit saja. Penentuan serapan fraksinasi bentonit dalam mengadsorpsi ion logam Pb^^, Cd^^ dan Cu^^ dilakukan dengan cara mengatur pH larutan (pH 2 -10) dengan menggunakan metode polarografi, menujukkan bahwa daya serap bentonit F4 lebih tjnggi dibaridingkan bentonit Ft, F2.daniF3. A " : - : , : Data yang diperoleh menujukkan bahwa kapasita& .penyerapan fraksinasi bentonit tergantung pada phf larutan. Adsorpsi maksimum ion logam Pb^*^ terjadi pada pH larutan 7, ion logam Cd^^ terjadi pada pH larutan 8 dan untuk ion logam Cu^"^ adsorpsi maksimum Iraksinasi mineral bentonit terjadi pada pH larutan 5."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Indonesia, 2006
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Swandani Sayuningtyas
"Bahan utama yang sangat panting dalam pembentukan zeolit adalah
sifika dan alumina. Komposisi kimia ini dapat diperoleh salah satunya dari
sumber alam seperti bentonit. Telah dipelajari, secara teknis dapat dilakukan
sintesis zeolit A dari bentonit ( Li, 2000; Lu,1991: Wang, 2002). Pada
penelitian ini bentonit yang digunakan berasal dari daerah Medan, dan
pengubahan bentonit menjadi zeolit A dapat dilakukan secara hidrotermal
melalui proses pengasaman, pembasaan, gelasi, dan kristalisasi.
Kunci keberhasilan membuat zeolit A dari bentonit adalah dengan
memperhatikan parameter proses seperti dosis zat kimia yang akan
direaksikan, suhu, dan waktu. Hal ini dapat mempengaruhi kualitas produk yang dihasilkan. Karakterisasi zeolit A yang dihasilkan dilakukan dengan
pengukuran menggunakan XRD.
Seianjutnya membandingkan kemampuan bentonit dan zeolit A hasi!
sintesis dalam mengadsorpsi ion Cu^"" dan ion NP"" yang biasa terdapat di
alam sebagai zat pencemar air yang dapat menimbuikan kerugian lingkungan
sekitar.
Waktu adsorpsi optimum bentonit dan zeolit A terhadap ion Cu^"" dan
ion NP"" adalah 100 menit. Konse.ntrasi optimum ion Cu^"" dan ion Np"" yang
dapat diserap oleh bentonit dan zeolit A adalah 300 ppm.
Daya serap zeolit A terhadap ion logam lebih besar daripada bentonit.
Misalnya pada waktu 100 menit, adsorpsi Ion Cu^"" dengan konsentrasi awal
40 ppm (0.0315 mek) pH larutan 5 oleh zeolit A sebesar76.751% dan oleh
bentonit sebesar 75.838%. Kapasitas adsorpsi tergantung pada pK larutan,
adsorpsi optimum ion Cu^"" dan ion Np^ terjadi pada pH 5"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2005
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deskha Ardianto
"Bentonit yang termodifikasi oleh oksida besi telah dilaporkan memiliki daya adsorpsi lebih tinggi dibandingkan monmorilllonit, oleh sebab itu dilakukan modifikasi bentonit dengan memvariasikan perbandingan mol oksida besi (Fe3O4) untuk mendapatkan sifat magnet yang berbeda dan daya serap yang lebih besar. Bentonit magnetik yang termodifikasi oksida besi dibuat menggunakan prekursor besi (III) dan besi (II) dengan menggunakan metode presipitasi. Bentonit magnetik dibuat Dengan memvariasikan mol Fe (III) dan Fe (II) 1:1 dan 1:2. Didapatkan bahwa BOB1211 (Bentonit Oksida Besi 1:2 dan mol Fe (III) dan Fe (II) 1:1) memiliki sifat magnet yang lebih tinggi dibandingkan BOB1212 yaitu sebesar 8,226 emu/g dan 6,383 emu/g. Pada BOB 1212 penambahan Fe (II) menurunkan sifat magnet. Sampel yang telah dibuat digunakan untuk aplikasi adsorpsi logam berat Cd2+ dan Co2+. Waktu optimum yang didapatkan untuk menyerap logam berat selama 60 menit. Adsorpsi logam Co2+ lebih besar dibandingkan adsorpsi logam Cd2+ dikarenakan pada BOB1211 terjadi pilarisasi magnetik pada interlayer monmorillonit. Didapatkan logam yang paling banyak teradsorp oleh bentonit oksida besi pada logam Co2+ dengan konsentrasi 1mM pada adsorben BOB 1211 sebanyak 92,72%. Logam Co2+ terjerap tidak hanya karena sifat keelektronegatifan yang dimiliki oleh monmorillonit tetapi juga karena sifat magnetik yang terdapat pada oksida besi yang berada pada interlayer monmorilonit. Logam Co2+ memiliki sifat paramagnetik yang memungkinkan lebih dapat ditarik oleh magnet. Sedangkan logam Cd2+ yang memiliki sifat diamagnetik tidak dapat ditarik seluruhnya oleh medan magnetik induksi yang dimiliki Bentonit Oksida Besi. Sehingga logam Co2+ lebih teradsorpsi oleh Bentonit oksida besi.

Bentonite which is modified by iron oxide precursor has been reported that has higher adsorption properties than montmorillonite. Therefore, in this study, bentonite will be modified by varying the mole ratio of iron oxide (Fe3O4) to obtain different magnetic properties and greater adsorption properties. Magnetic bentonite modified iron oxide was made using iron (III) and iron (II) by using precipitation method. Magnetic bentonite was made by varying the mole ratio of Fe(III) and Fe (II) is 1:1 and 1:2. As a result, BOB 1211 (Bentonite Iron Oxide 1:2 and The ratio mole of Fe(III) and Fe(II) 1:1) has a higher magnetic properties than BOB 1212 is 8,226 emu/g and 6,383 emu/g. BOB 1212 on the addition of Fe(II) decrease the magnetic properties. Samples which have been made are used for heavy metal adsorption applications Cd2+ and Co2+. The optimum time to absorb heavy metals was 60 minutes. Metal adsorption Co2+ was greater than Cd2+ because on BOB 1211 occurred magnetic pilaritation of interlayer montmorillonite. The most metal absorbed by Iron Oxide Bentonite in Co2+ with 1 mM concentration on the adsorbent BOB 1211 is much as 92.72%. Co2+ adsorbed not only because of the nature of electro negativity which is owned by monmorillonit but also because of the magnetic properties of iron oxide contained in the interlayer monmorillonit. Metal Co2+ has characteristic of paramagnetic that can be withdrawn by magnets. Whereas Cd2+ metal which has a characteristic of dimagnetic can not be withdrawn entirely by the induction owned by Iron Oxide Bentonite."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S52694
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>