Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7932 dokumen yang sesuai dengan query
cover
Gibbon, David C.
Berlin Heidelberg: Springer, 2008
025.04 GIB i;025.04 GIB i (2);025.04 GIB i (2)
Buku Teks SO  Universitas Indonesia Library
cover
Croft, W. Bruce
Boston: Pearson, 2010
005.758 CRO s
Buku Teks SO  Universitas Indonesia Library
cover
Ortega, Jose Luis
"Academic search e ngines, intends to run through the current panorama of the academic search engines through a quantitative approach that analyses the reliability and consistence of these services. The objective is to describe the main characteristics of these engines, to highlight their advantages and drawbacks, and to discuss the implications of these new products in the future of scientific communication and their impact on the research measurement and evaluation. In short, Academic search engines presents a summary view of the new challenges that the Web set to the scientific activity through the most novel and innovative searching services available on the web.
"
Oxford, UK: Chandos, 2014
e20426753
eBooks  Universitas Indonesia Library
cover
Berlin: Springer, 2008
025.524 INF
Buku Teks SO  Universitas Indonesia Library
cover
Berry, Michael W.
"The second edition of Understanding Search Engines: Mathematical Modeling and Text Retrieval follows the basic premise of the first edition by discussing many of the key design issues for building search engines and emphasizing the important role that applied mathematics can play in improving information retrieval. The authors discuss important data structures, algorithms, and software as well as user-centered issues such as interfaces, manual indexing, and document preparation.
Readers will find that the second edition includes significant changes that bring the text up to date on current information retrieval methods. For example, the authors have added a completely new chapter on link-structure algorithms used in search engines such as Google, and the chapter on user interface has been rewritten to specifically focus on search engine usability. To reflect updates in the literature on information retrieval, the authors have added new recommendations for further reading and expanded the bibliography. In addition, the index has been updated and streamlined to make it more reader friendly."
Philadelphia: Society for Industrial and Applied Mathematics, 2005
e20443307
eBooks  Universitas Indonesia Library
cover
Alfred
Barkeley: Peachpit press, 1999
025.042 52 ALF s
Buku Teks SO  Universitas Indonesia Library
cover
New Haven: Springer, 2008
025.04 WEB
Buku Teks SO  Universitas Indonesia Library
cover
Bima Sudarsono Adinsa
"Perkembangan teknologi Artificial Intelligence (AI), terkhusus AI text generators (AITGs), telah membawa perubahan signifikan dalam kehidupan manusia di Indonesia. Kehadiran AITGs berhasil mengubah perilaku seseorang mencapai berbagai tujuan, misalnya sebagai sumber belajar dan berpotensi menggantikan popularitas Google SE sebagai penyedia informasi paling populer saat ini. Penelitian ini bertujuan untuk memahami lebih jauh fenomena perpindahan dari Google SE ke AITGs dan memahami faktor-faktor yang memengaruhi terjadinya perilaku ini. Penelitian ini menggunakan kerangka PPM sebagai acuan pembentukan model. Penelitian ini melakukan analisis kualitatif terhadap 11 responden dan analisis kuantitatif terhadap 491 responden. Analisis data dilakukan dengan menggunakan grounded theory dan PLS-SEM modelling menggunakan bantuan aplikasi SmartPLS 4. Hasil penelitian ini mengungkapkan bahwa faktor low searching performance, explainability, inertia, perceived usefulness, social interaction, dan adaptability berpengaruh terhadap intensi berpindah dari Google SE ke AITGs. Sebaliknya, faktor privacy concern, intrusiveness of advertisement, perceived risk, dan perceived ease of use tidak berpengaruh secara signifikan terhadap intensi berpindah dari Google SE ke AITGs. Hasil tersebut diharapkan dapat membuka peluang bagi pengembangan ilmu pengetahuan secara umum dan terkhusus dalam konteks AITGs sebagai sumber belajar. Penelitian ini diharapkan dapat menjadi sumber informasi bagi masyarakat terkait AITGs sebagai sumber belajar, acuan bagi akademisi dan pengajar dalam penyusunan kurikulum dan aturan, serta bermanfaat bagi pelaku bisnis dan pengembang untuk meningkatkan fungsionalitas yang sesuai dengan kebutuhan masyarakat.

The development of Artificial Intelligence (AI) technology, especially AI text generators (AITGs), has brought significant changes to human life in Indonesia. The presence of AITGs has succeeded in changing a person's behavior to achieve various goals, for example as a learning resource, and has the potential to replace the popularity of Google SE as the most popular information provider today. This research aims to understand further the phenomenon of moving from Google SE to AITGs and understand the factors that influence this behavior. This research uses the PPM framework as a reference for model formation. This research conducted a qualitative analysis of 11 respondents and a quantitative analysis of 491 respondents. Data analysis was carried out using grounded theory and PLS-SEM modeling using the SmartPLS 4 application. The results of this study revealed that the factors of low searching performance, explainability, inertia, perceived usefulness, social interaction, and adaptability influenced the intention to switch from Google SE to AITGs. On the other hand, the factors of privacy concern, intrusiveness of advertisement, perceived risk, and perceived ease of use do not significantly influence the intention to switch from Google SE to AITGs. It is hoped that these results will open up opportunities for the development of knowledge in general and specifically in the context of AITGs as a learning resource. It is hoped that this research can be a source of information for the community regarding AITGs as a learning resource, a reference for academics and teachers in preparing curricula and regulations, as well as being useful for business people and developers to improve functionality by community needs."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arvin Christian
"ABSTRAK
Salah satu hal yang dibutuhkan user dalam memudahkan melakukan adalah dengan menggunakan mesin pencarian atau yang disebut search engine. Search engine didesain agar dapat membantu pengguna dalam melakukan pencarian data. Fitur yang dapat digunakan dalam membantu pencarian data adalah Text Suggestion dan Text Correction. Text Suggestion dapat membantu pengguna dalam memperkirakan keyword apa yang akan ditulis untuk menemukan data yang paling sesuai. Text Correction adalah fitur untuk memperbaiki kesalahan penulisan, sehingga diharapkan dapat memperbaiki hasil pencarian. Levenshtein Distance, dapat digunakan untuk fitur Text Suggestion dan Correction dengan menghitung maksimum LD dengan variasi range dari satu sampai lima. Tujuan penelitian ini adalah menguji keakuratan Levenshtein Distance dalam membuat sistem Text Suggestion dan Text Correction. Metode yang digunakan adalah dengan menghitung tingkat kemiripan keyword dengan daftar referensi yang ada pada basis data, dan mengambil kata tersebut untuk dijadikan sebagai text suggestion maupun text correction. Dari hasil penelitian ini, akan didapatkan bahwa sebuah batasan maksimum Levenshtein Cost dapat mempengaruhi keakuratan hasil text correction dan text suggestion. Maksimum LD juga berpengaruh pada performa waktu baik pada Text suggestion dan Text Correction, dengan eksekusi waktu Text Correction lebih cepat dibanding Text Suggestion.Nilai maksimum LD yang optimal adalah dua atau tiga.

ABSTRACT
One of the things required by the user in facilitating the search for data contained on the internet is to use a search engine or so-called search engines. Search engines must also be designed in order to assist users in searching data. Features that can be used in assisting data retrieval are Text Suggestion and Text Correction. Text Suggestion can help users in predicting what keywords will be written to find the most appropriate data. Text Correction is a feature to correct writing errors, so it is expected to improve search results. By utilizing Levenshtein Distance, it can be used for Text Suggestion feature by calculating maximum LD with variation range from one to five. The purpose of this research is to test the accuracy of Levenshtein Distance algorithm in making Text Suggestion and Text Correction system. The method used is to calculate the level of similarity of the keyword with a list of references in the database, and take the word to be used as a text suggestion or text correction. From the results of this study, it will be found that a maximum limit Levenshtein Cost can affect the accuracy of the results of text correction and text suggestion.The optimum of Maximum LD is two or three."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hadina Widyasari
"Skripsi ini membahas penelitian dan perancangan sebuah sistem web scraping untuk informasi kursus di Coursera dengan rekomendasi model dan metrik untuk pencarian kursus. Telah banyak tersedia layanan kursus online yang bisa dicari dan diakses sesuai dengan ketersediaan dan kebutuhan, seperti Coursera. Namun, ketika pengguna hendak mencari kursus dengan memasukkan teks ke dalam section penelusuran kursus Coursera, hasil pengurutan penelusuran bisa saja kurang sesuai dengan apa yang sebenarnya diharapkan atau dituju pengguna dengan keyword. Tujuan penelitian dan perancangan sistem ini adalah agar pengguna yang ingin mencari kursus di Coursera berdasarkan keyword dapat menggunakan sistem ini sebagai cara alternatif untuk memperoleh dan melihat gambaran urutan hasil penelusuran kursus-kursus yang tersedia di Coursera dengan akurasi kecocokan yang lebih tinggi sehingga diharapkan dapat menemukan kursus-kursus yang lebih sesuai dengan yang dicari melalui keyword atau teks. Penelitian dan perancangan sistem ini secara garis besar terdiri dari program scraper, database, pengujian model dan metrik, dan program pencarian kursus menggunakan perhitungan kemiripan antara teks dalam database dengan teks input dari user. Hasilnya, jika dibandingkan dengan metode yang digunakan Coursera untuk menampilkan hasil pengurutan kursus dengan pilihan sorting sudah berdasarkan “Best Match”, ternyata program pencarian kursus menggunakan soft cosine similarity dan cosine similarity yang dikombinasikan dengan all-MiniLM-L6-v2 telah menunjukkan peningkatan akurasi sebesar 33.33%.

This thesis discusses the research and design of a web scraping system for course information on Coursera with models and metrics recommendation for course search. Many online course services are available that can be searched and accessed according to availability and needs, such as Coursera. However, when users want to search for courses by entering text into the Coursera course search section, the search sorting results may not match what users actually expect or aim for with the keyword. The aim of this research and system design is for users who want to search for courses on Coursera based on keywords to use this system as an alternative way to obtain and see an overview of the order of search results for courses available on Coursera with higher accuracy of match so that it is expected to find more suitable courses through the keyword or text. This research and system design consists of a scraper program, a database, model and metric testing, and a course search program using similarity calculations between text in the database and user input text. As a result, compared to the method used by Coursera to display course sorting results with the sorting option already based on “Best Match”, it turns out that the course search program using soft cosine similarity and cosine similarity combined with all-MiniLM-L6-v2 has shown an accuracy increase of 33.33%."
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>