Ditemukan 12531 dokumen yang sesuai dengan query
Stapley, J.H.
Cleveland, Ohio: CRC Press, 1969
632.6 STA w
Buku Teks Universitas Indonesia Library
Cravens, Richard H.
Alexandria: Time-Life Books, 1977
R 635 CRA p
Buku Referensi Universitas Indonesia Library
Leach, Julian Gilbert
New York: McGraw-Hill, 1940
581.33 LEA i
Buku Teks Universitas Indonesia Library
Wheeler, B.E.J.
London: Edward Arnold, 1976
632.3 WHE d
Buku Teks Universitas Indonesia Library
Pracaya
Jakarta: Penebar Swadaya, 1995
632.3 PRA h
Buku Teks Universitas Indonesia Library
Nur Tjahjadi
Yogyakarta: Kanisius, 1989
622.3 NUR h (1)
Buku Teks SO Universitas Indonesia Library
Michelle Agustaranny Sekar Arum
"Sebagian besar perkebunan karet di Sumatera Selatan mengalami penurunan produksi karena dampak penyakit gugur daun. Penyakit ini sebagian besar disebabkan oleh persebaran jamur Oidium sp., Colletotrichum sp., dan Pestalotiopsis sp. Oleh karena itu, pembangunan model berbasis indeks vegetasi NDRE, GNDVI, VARI, dan ARVI, yang bertujuan untuk mendeteksi persebaran penyakit ini dianggap penting. Penelitian dilakukan di Perkebunan Pusat Penelitian Karet Sembawa dengan memanfaatkan data UAV multispektral yang telah diproses menggunakan OBIA, serta survei lapangan. Dari 623 sampel data, 70% digunakan untuk pelatihan model, sementara 30% sampel digunakan untuk pengujian model. Pengolahan data dilakukan menggunakan Google Earth Engine dan visualisasi dilakukan dengan ArcGIS Pro. Hasil penelitian menunjukkan bahwa keseluruhan model memiliki tingkat akurasi pelatihan secara keseluruhan di atas 0,7, dengan model GNDVI + NDRE + VARI menonjol dengan tingkat akurasi pelatihan yang paling baik. Namun, model tersebut menunjukkan kinerja yang buruk dalam pengujian dengan nilai akurasi validasi yang rendah, hal ini menunjukkan bahwa model belum dapat memprediksi penyakit tanaman karet dengan baik. Selain itu, dari hasil analisis kondisi fisik ditemukan bahwa kondisi suhu dan curah hujan di perkebunan karet Sembawa berada pada nilai optimal yang mendukung pertumbuhan dan penyebaran ketiga jenis jamur penyebab penyakit tersebut.
South Sumatra plays a crucial role as Indonesia's main rubber exporter, making it a flagship commodity. However, most rubber plantations in South Sumatra face declining production due to leaf fall disease, primarily caused by the fungi Oidium sp., Colletotrichum sp., and Pestalotiopsis sp. Therefore, developing a vegetation index-based model using NDRE, GNDVI, VARI, and ARVI to detect the spread of this disease is considered essential. The study was conducted at the Sembawa Rubber Research Center Plantation, utilizing multispectral UAV data processed with OBIA and field surveys. Of the 623 data samples, 70% were used for model training, while 30% were used for model testing. Data processing was performed using Google Earth Engine, and visualization was done with ArcGIS Pro. Results showed that all models had overall training accuracy above 0.7, with the GNDVI + NDRE + VARI model standing out with the best training accuracy. However, this model performed poorly in testing, with low validation accuracy, indicating its inability to predict new data. Additionally, physical condition analysis revealed that the temperature and rainfall conditions in the Sembawa rubber plantation were optimal, supporting the growth and spread of the three disease-causing fungi."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Kalshoven, L.G.E.
Jakarta: Ichtiar Baru - Van Hoeve, 1981
632.6 KAL p
Buku Teks Universitas Indonesia Library
Mukerji, K.G.
New Delhi: Tata McGraw-Hill, 1986
R 632.309 54 MUK p
Buku Referensi Universitas Indonesia Library
Muhammad Ghazy
"Indonesia merupakan salah satu negara dengan produksi tanaman padi terbesar di dunia dengan total lebih dari 150 juta ton padi dihasilkan pada 3 tahun terakhir. Meskipun sudah menjadi makanan pokok selama bertahun-tahun, tanaman padi tidak luput dari serangan penyakit yang dapat menghambat produksi beras padi. Berbagai macam penyakit dapat menghambat produksi beras padi di Indonesia. Daun tanaman padi yang terkena serangan penyakit dapat digunakan sebagai indikator jenis penyakit dikarenakan setiap penyakit tanaman padi memiliki corak yang unik pada daun tanaman padi. Dari citra daun tanaman padi yang didapat, dilakukan transformasi format citra ke dalam format grayscale untuk dibentuk Gray Level Co-occurence Matrix (GLCM) untuk beberapa sudut. Fitur Haralick kemudian diekstraksi dari GLCM yang sudah didapatkan untuk mendapatkan fitur-fitur yang dapat menjelaskan citra daun tanaman padi tersebut. Metode ini dapat digunakan dikarenakan fitur Haralick dalam GLCM mampu menangani citra yang memiliki perbedaan tekstur dengan baik dan citra daun penyakit tanaman padi memiliki perbedaan pada tekstur daun yang cukup jelas dilihat. Sehingga dapat dikatakan bahwa metode ini cocok untuk digunakan pada kasus ini. Dengan jumlah fitur Haralick yang cukup banyak, Linear Discriminant Analyis (LDA) kemudian diaplikasikan kepada fitur-fitur Haralick sebagai metode reduksi dimensi sedemikian sehingga fitur baru yang didapatkan memiliki separasi yang lebih baik. Kemudian, Support Vector Machine (SVM) digunakan sebagai classifier dalam mengklasifikasi penyakit tanaman padi menggunakan fitur LDA yang sudah didapatkan.
Indonesia is one of the world’s leading rice producers with a total of more than 150 million tons of rice produced in the last three years . Rice plants, despite being a staple crop for many years, are susceptible to diseases that can hamper rice production. Because each diseases of rice plants has a distinctive pattern on the leaves of rice plants, the leaves of diseased rice plants can be used as indicators of the type of disease. The picture format of the rice leaf is converted to grayscale in order to create a Gray Level Co-occurence Matrix (GLCM) at multiple angles. The Haralick feature is extracted from the GLCM to obtain features that can describe the image of the rice plant leaf. Because the Haralick feature in GLCM can handle images with diverse textures and the image of leaves of rice plant diseases has differences in leaf texture that are clearly apparent, this method can be used. With a large number of Haralick features, the Linear Discriminant Analysis (LDA) is used as a dimension reduction technique for the Haralick features, resulting in better separation of the new features. The Support Vector Machine (SVM) is used as a classifier to classify rice plant diseases based on the obtained LDA features."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library