Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 34696 dokumen yang sesuai dengan query
cover
Ann Anbor: Michigan Institute for Social Research The University of Michigan, 1973
519.536 MUL
Buku Teks  Universitas Indonesia Library
cover
Naufal Ghani Putra
"Beberapa jurnal statistik menunjukkan bahwa pergerakan harga saham dapat diprediksi dengan menggunakan pergerakan harga masa lalu, namun cara ini ditentang oleh Eugene Fama dalam tesisnya yang berjudul Random Walk in Stock Market. Hal tersebut didukung oleh Burton G. Malkiel dalam bukunya yang berjudul Random Walk in Wall Street. Berdasarkan hal tersebut harus dicari cara lain yaitu dengan menggunakan rasio keuangan. Dutta tahun 2012 menunjukkan cara memprediksi pergerakan saham menggunakan Binary Logistic Regression (BLR) dengan rasio keuangan sebagai prediktornya. Model BLR-nya terlibat dalam algoritma klasifikasi biner yang menggunakan nilai cut off dalam aturan klasifikasinya untuk mengklasifikasikan perusahaan mana yang harga sahamnya akan naik atau tidak. Metode ini diterapkan dalam penelitian ini untuk memprediksi pergerakan saham di Indonesia. Sebuah penelitian menunjukkan bahwa keputusan investor dipengaruhi oleh lokasi perusahaan. Oleh karena itu, BLR belum tentu menjadi model yang tepat untuk memprediksi pergerakan saham karena tidak memperhatikan unsur regional (spasial) sehingga dalam penelitian ini digunakan model regresi logistik biner yang mempertimbangkan elemen spasial yang disebut dengan Geographically Weighted Logistic Regression (GWLR) model dan membandingkan kinerja model. dengan model BLR dalam memprediksi pergerakan saham dengan menggunakan rasio keuangan sebagai prediktor. Penelitian diawali dengan mencari model BLR terbaik yang dibuat dari data latih tahun 2013. Model terbaik dengan prediktor rasio keuangan adalah DER (Debt to Equity Ratio). Kemudian dibuat model GWLR dengan prediktor yang sama. BLR dan GWLR dilibatkan vii Universitas Indonesia dalam algoritma klasifikasi biner. Kemudian dilakukan pengujian algoritma masing-masing menggunakan data latih 2013, dan data pengujian tahun 2014 menghasilkan AUC masing-masing sebesar 0,6252723 dan 0,6666667, untuk algoritma klasifikasi biner yang melibatkan GWLR, dan untuk algoritma klasifikasi biner yang melibatkan BLR diperoleh 0,6176471, dan 0,627381. Hal ini menunjukkan bahwa kinerja model GWLR lebih baik dari pada BLR.
Several statistical journals show that stock price movements can be predicted using past price movements, but this method is opposed by Eugene Fama in his thesis entitled Random Walk in Stock Market. This is supported by Burton G. Malkiel in his book entitled Random Walk in Wall Street. Based on this, another way must be sought, namely by using financial ratios. Dutta 2012 shows how to predict stock movements using Binary Logistic Regression (BLR) with financial ratios as predictors. The BLR model is involved in a binary classification algorithm that uses the cut off value in its classification rules to classify which companies will increase their share price or not. This method is applied in this study to predict stock movements in Indonesia. A study shows that investors' decisions are influenced by the location of the company. Therefore, BLR is not necessarily the right model for predicting stock movements because it does not pay attention to regional (spatial) elements so in this study a binary logistic regression model is used that considers spatial elements called the Geographically Weighted Logistic Regression (GWLR) model and compares performance. model. with the BLR model in predicting stock movements using financial ratios as predictors. The research begins with finding the best BLR model made from training data in 2013. The best model with a predictor of financial ratios is DER (Debt to Equity Ratio). Then a GWLR model was made with the same predictors. BLR and GWLR were involved vii University of Indonesia in the binary classification algorithm. Then each algorithm was tested using the 2013 training data, and the 2014 test data resulted in an AUC of 0.6252723 and 0.6666667, respectively, for the binary classification algorithm involving GWLR, and for the binary classification algorithm involving BLR it was obtained 0, 6176471, and 0.627381. This shows that the performance of the GWLR model is better than the BLR."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Olive, David J
"This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response transformations for multiple linear regression or experimental design models."
Switzerland: Springer International Publishing, 2017
e20528414
eBooks  Universitas Indonesia Library
cover
Eslim Suyangsu Rohmanullah
"Perkembangan era globalisasi dapat menyebabkan terjadinya persaingan didalamnya yang akan mendorong beberapa individu atau kelompok untuk terlibat dalam tindak kejahatan dengan metode ilegal dalam upaya untuk mencapai keunggulan atau mengalahkan pesaing. Tidak dapat dipungkiri jika tindak kejahatan di Indonesia semakin marak diberitakan melalui media elektronik ataupun media lainnya. Peristiwa ini didukung dengan peningkatan jumlah tindak pidana di Indonesia dalam tiga tahun terakhir. Demi mengurangi dampak negatif persaingan yang dapat memicu tindak kejahatan dan mencapai tujuan ke-16 SDGs untuk menciptakan lingkungan yang lebih aman bagi masyarakat, khususnya di era globalisasi, maka penting untuk memahami faktor-faktor yang dapat menjelaskan tingkat kriminalitas. Tujuan dari penelitian ini adalah menganalisis faktor-faktor yang menjelaskan tingkat kriminalitas di Sumatera Utara menggunakan metode Geographically and Temporally Weighted Regression (GTWR) dengan fungsi pembobot adaptive kernel Bisquare. Metode GTWR merupakan pengembangan dari metode Geographically Weighted Regression (GWR) yang tidak hanya mempertimbangkan heterogenitas spasial, tetapi juga heterogenitas temporal. Penelitian ini menggunakan variabel penjelas Kepadatan Penduduk (KPn), Jumlah Penduduk Miskin (JPM), Garis Kemiskinan (GKm), Rata-rata Lama Sekolah (RLS), Tingkat Pengangguran Terbuka (TPT), dan Pengeluaran Perkapita Disesuaikan (PKD). Hasil dari penelitian ini diperoleh 10 kelompok area berdasarkan perbedaan signifikansi variabel penjelas setiap tahunnya. Terdiri dari 3 kelompok area pada tahun 2019, 4 kelompok area pada tahun 2020, dan 3 kelompok area pada tahun 2021.

The development of era of globalization can lead to competition that may drive individuals or groups to engage in criminal activities using illegal methods to achieve an advantage or surpass competitors. Crime in Indonesia is inevitably increasing, whether reported by electronic media or other media. This phenomenon has auxiliary data on the increasing number of criminal in Indonesia over the past three years. In order to mitigate the adverse effects of competition that may lead to criminal behavior and accomplish Goal 16 of the Sustainable Development Goals (SDGs), which aims to create a safer environment for society, especially in the era of globalization, it is necessary to understand the factors that can explain the crime rates. The objective of this study is to analyze the factors that explain the crime rates in North Sumatra using the Geographically and Temporally Weighted Regression (GTWR) method with weighting functions adaptive Bisquare kernel. The GTWR method is an extension of the Geographically Weighted Regression (GWR) method, which considers spatial and temporal heterogeneity. This study uses explanatory variables such as Population Density (KPn), Number of Poor People (JPM), Poverty Line (GKm), Average Length of Schooling (RLS), Open Unemployment Rate (TPT), and Adjusted Per Capita Expenditure (PKD). The results of this study obtained 10 areas groups based on the significance of different explanatory variables for each year consisting of 3 broad groups in 2019, 4 broad groups in 2020, and 3 broad groups in 2021."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Montgomery, Douglas C.
New Jersey: John Wiley & Sons, 2012
519.5 MON i
Buku Teks  Universitas Indonesia Library
cover
"This monograph focuses on the construction of regression models with linear and non-linear constrain inequalities from the theoretical point of view. This volume analyses the properties of regression with inequality constrains, investigating the flexibility of inequality constrains and their ability to adapt in the presence of additional a priori information The implementation of inequality constrains improves the accuracy of models, and decreases the likelihood of errors. Based on the obtained theoretical results, a computational technique for estimation and prognostication problems is suggested. "
New York: [Springer, ], 2012
e20419174
eBooks  Universitas Indonesia Library
cover
Dickson Dichandra
"Regresi kuantil adalah metode regresi yang menghubungkan kuantil dari variabel respon dengan satu atau beberapa variabel prediktor. Regresi kuantil memiliki kelebihan yang tidak dimiliki oleh regresi linier yaitu robust terhadap outlier dan dapat memodelkan data yang heteroskedastisitas. Regresi kuantil dapat diestimasi parameternya dengan metode Bayesian.
Metode Bayesian adalah alat analisis data yang diturunkan berdasarkan prinsip inferensi Bayesian. Inferensi Bayesian adalah proses mempelajari analisis data secara induktif dengan teorema Bayes. Untuk menaksir parameter regresi dengan inferensi Bayesian, perlu dicari distribusi posterior dari parameter regresi dimana distribusi posterior proporsional terhadap perkalian distribusi prior dan fungsi likelihoodnya. Karena perhitungan distribusi posterior secara analitik sulit untuk dilakukan jika semakin banyak parameter yang ditaksir, maka diajukan metode Markov Chain Monte Carlo (MCMC). Penggunaan metode Bayesian dalam regresi kuantil memiliki kelebihan yaitu penggunaan MCMC memiliki kelebihan yaitu mendapatkan sampel nilai parameter dari distribusi posterior yang tidak diketahui, penggunaan
yang efisien secara komputasi, dan mudah diimplementasikannya. Yu dan Moyeed (2001) memperkenalkan regresi kuantil Bayesian dengan menggunakan fungsi likelihood dari error yang berdistribusi Asymmetric Laplace Distribution (ALD) dan menemukan bahwa
meminimumkan taksiran parameter pada regresi kuantil sama dengan memaksimalkan fungsi likelihood dari error yang berdistribusi Asymmetric Laplace Distribution (ALD). Metode yang digunakan untuk menaksir parameter regresi kuantil adalah Gibbs sampling dari distribusi ALD yang merupakan kombinasi dari distribusi eksponensial dan Normal. Penaksiran parameter model regresi dilakukan dengan cara pengambilan sampel pada distribusi posterior
dari parameter regresi yang ditemukan dalam skripsi ini. Pengambilan sampel pada distribusi posterior dapat menggunakan metode Gibbs sampling. Hasil yang diperoleh dari Gibbs sampling berupa barisan sampel parameter yang diestimasikan. Setelah mendapatkan barisan sampel, barisan sampel dirata-ratakan untuk mendapatkan taksiran parameter regresinya. Studi kasus dalam skripsi ini adalah membahas pengaruh faktor risiko dari nasabah asuransi kendaraan bermotor terhadap besar klaim yang diajukan oleh nasabah.

Quantile regression is a regression method that links the quantiles of the response variable with one or more predictor variables. Quantile regression has advantages that linear regression does not have; it is robust against outliers and can model heteroscedasticity data.
The parameters of quantile regression can be estimated using the Bayesian method. The Bayesian method is a data analysis tool derived based on the Bayesian inference principle.
Bayesian inference is the process of studying data analysis inductively with the Bayes theorem. To estimate regression parameters with Bayesian inference, it is necessary to find the posterior distribution of the regression parameters where the posterior distribution is
proportional to the product of the prior distribution and its likelihood function. Since the calculation of the posterior distribution analytically is difficult to do if the more parameters are estimated, the Markov Chain Monte Carlo (MCMC) method is proposed. The use of the Bayesian method in quantile regression has advantages, namely the use of MCMC has the advantages of obtaining sample parameter values from an unknown posterior distribution,
using computationally efficient, and easy to implement. Yu and Moyeed (2001) introduced Bayesian quantile regression using the likelihood function of errors with an Asymmetric Laplace Distribution (ALD) distribution and found that minimizing parameter estimates in quantile regression is the same as maximizing the likelihood function of errors with an Asymmetric Laplace Distribution (ALD) distribution. The method used to estimate quantile regression parameters is Gibbs sampling from the ALD distribution, which is a combination
of the exponential and normal distributions. The estimation of the regression model parameters is done by sampling the posterior distribution of the regression parameters which is found in this thesis. Gibbs sampling method is used to sampling the posterior distribution.
The results obtained from Gibbs sampling are a sample sequence of estimated parameters.
After obtaining the sample sequences, the sample lines are averaged to obtain an estimated regression parameter. The case study in this thesis discusses the effect of risk factors from motor vehicle insurance customers on the size of claims submitted by customers.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sitti Anindya
"Model regresi data panel balanced dinamis dengan fixed effect merupakan model regresi data panel yang melibatkan lag dari variabel respon sebagai variabel penjelas. Asumsi model regresi data panel dinamis yang dibahas adalah balanced panel, yaitu tiap individu diamati untuk panjang waktu yang sama. Dengan asumsi fixed effect, heterogenitas dapat terlihat pada intersep model. Metode penaksiran yang digunakan dikenal sebagai LSDV (least square dummy variable) namun taksiran yang dihasilkan bias. Taksiran ini juga tidak konsisten ketika periode waktu berhingga. Oleh karena itu, dibutuhkan metode lain untuk menaksir parameter dalam model. Metode yang dapat digunakan adalah metode bias terkoreksi. Estimasi bias terkoreksi diperoleh dari koreksi bias asimtotik taksiran LSDV dengan bias asimtotik didapat melalui bentuk ketidakkonsistenan penaksir. Secara intuitif, koreksi bias ini menghilangkan bentuk tidak konsistennya taksiran LSDV sehingga menjadi taksiran yang konsisten. Prosedur iteratif digunakan untuk mendapatkan taksiran bias terkoreksi. Teknik bias terkoreksi ini diaplikasikan dalam analisis empiris dari model dinamis tingkat pengangguran di negara bagian Amerika Serikat pada periode 1991-2000.

Regression model of balanced dynamic panel data with fixed effect is a regression model of panel data involving lag of response variable as explanatory variable. Assumption regression model of dynamic panel data discussed is balanced panel, that is each individual observed for the same length of time period. Assuming a fixed effect, heterogeneity can be seen on the intercept model. The assessment method used is known as LSDV (least square dummy variable) however the resulting estimates generated bias. These estimators will also inconsistent for finite number of time period. Therefore, other methods are needed to estimate parameters in model. A method that can be used is bias corrected method. Bias corrected estimation is derived from the asymptotic bias correction LSDV estimator which the asymptotic bias obtained through the form of inconsistent of estimator. Intuitively, this bias correction eliminates the form of inconsistent of LSDV estimator so as to be consistent. Iterative procedure are used to obtain this bias corrected estimator. The proposed technique is applied in an empirical analysis of unemployment rate model dynamics at the U.S. state level for the 1991-2000 period."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S47006
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khoirun Nisa
"ABSTRAK
Salah satu alternatif ukuran kekuatan prediksi yang dapat diterapkan pada model GLM dimana variabel responnya berdistribusi tidak hanya normal yaitu dengan menggunakan koefisien korelasi regresi regression correlation coefficient ndash; RCC . Koefisien korelasi regresi dibangun berdasarkan definisi koefisien korelasi dengan menggunakan model GLM. Sehingga RCC dapat didefinisikan sebagai nilai yang menyatakan kekuatan hubungan antara variabel respon dan ekspektasi bersyarat dari variabel respon. Koefisien korelasi regresi merupakan salah satu alternatif ukuran kekuatan prediksi yang dapat memenuhi sifat applicability, interpretability, consistency, dan affinity. Pada umumnya bentuk eksplisit dari RCC pada GLM sulit ditemukan. Namun, ketika RCC diterapkan pada model regresi Poisson dan variabel prediktor diasumsikan berdistribusi multivariat normal, maka akan ditemukan bentuk eksplisit. Bentuk eksplisit ini masih memuat parameter ndash; parameter dari model regresi Poisson yang tidak diketahui. Oleh karena itu, perlu dicari estimasi dari parameter - parameter tersebut sehingga diperoleh estimator dari RCC. Metode yang digunakan untuk mengestimasi parameter pada model regresi Poisson adalah metode maximum likelihood.
"
"
"ABSTRACT
"
The regression correlation coefficient RCC is one alternative measure of predictive power that can be applied to the GLM model in which the distribution of response variable is not only normal. The regression correlation coefficient is constructed based on the definition of correlation coefficient by using generalized linear model GLM . So, the RCC can be defined as a value that states the strength of the relationship between the response variable and the conditional expectation of the response variable. The regression correlation coefficient is one of predictable strength measure that can satiesfies the property like applicability, interpretability, consistency, and affinity. In general, the explicit form of RCC on GLM is difficult to find. However, when RCC is applied to the Poisson regression model and the predictor variable is assumed to be a normal multivariate distribution, an explicit form is found. This explicit form still contains the unknown parameters of the Poisson regression model. Therefore, we need to find an estimate of these parameters to obtain an estimator from the RCC. The method used to estimate the parameters in Poisson regression model is maximum likelihood method."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hafis Rialdy Azhari
"Dalam segala kompetisi olahraga, mengetahui tim mana yang akan menjuarai atau memenangkan pertandingan atau kejuaraan merupakan sesuatu yang menarik untuk diketahui oleh fans dan media, tak terkecuali dengan sepak bola yang beberapa tahun terakhir ini telah menjadi topik penelitian. Dalam skripsi ini digunakan model regresi Poisson untuk memprediksi hasil akhir pertandingan sepak bola, dengan memprediksi rataan gol yang dicetak suatu tim dalam setiap pertandingan yang mengikuti distribusi Poisson. Model regresi Poisson untuk banyak gol yang dicetak suatu tim dikonstruksi dari empat variabel yaitu gol yang dicetak dalam tiap pertandingan, keuntungan bermain kendang home advantage, kemampuan serangan offensive, kemampuan pertahanan deffensive. Metodologi diterapkan pada Liga Utama Inggris 2017-2018. Adapun hasil yang dikeluarkan memiliki tingkat akurasi yang cukup baik.

In any sport competition, there is a strong interest in knowing which team shall be the champion at the end of the championship and one of them is football. Football match predictions are of great interest to fans and sports press. In the last few years it has been the focus of several studies. In this essay, propose Poisson regression model to predict the final result of football matches. Predict the average goals scored by each team by assuming that the number of goals scored by a team in a match follows a univariate Poisson distribution. Poisson regression model for many goals scored by the team is formulated from four variables the goal average in a match, the home team advantage, the team 39 s offensive power, the opponent team 39s defensive power. The methodology is applied to the 2017 2018 English Premier League. The results obtained using this model has a fairly good accuracy.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>