Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 38484 dokumen yang sesuai dengan query
cover
Berger, James O.
New York: Springer-Verlag, 1985
519.542 BER s
Buku Teks SO  Universitas Indonesia Library
cover
Lindley, D.V.
"A study of those statistical ideas that use a probability distribution over parameter space. The first part describes the axiomatic basis in the concept of coherence and the implications of this for sampling theory statistics. The second part discusses the use of Bayesian ideas in many branches of statistics."
Philadelphia: Society for Industrial and Applied Mathematics, 1995
e20451236
eBooks  Universitas Indonesia Library
cover
Setia Gunawan Wijaya
"Scan statistic merupakan suatu analisis untuk mendeteksi daerah yang merupakan kejadian luar biasa atau KLB (outbreak). Salah satu metode yang mendasari analisis scan statistic adalah metode Bayesian Scan Statistic. Metode ini menerapkan prinsip teorema bayesian, yaitu memanfaatkan informasi prior untuk menghasilkan informasi posterior yang dapat memperbaiki informasi prior. Metode Bayesian Scan Statistic memilih keadaan atau kondisi yang memiliki posterior probability yang terbesar sebagai daerah KLB-nya. Fungsi marginal likelihood dan prior probability merupakan dua komponen penting yang digunakan dalam metode ini untuk menghitung posterior probability untuk tiap-tiap daerah. Fungsi marginal likelihood didapat dari data historis dan modelnya merupakan gabungan antara distribusi poisson dan distribusi gamma. Sedangan untuk prior probability juga didapat dari data historis atau berdasarkan pada pengalaman seseorang. Metode bayesian scan statistic ini dapat digunakan jika terdapat data masa lalu. Kata kunci : bayesian scan statistic, bayesian cluster detection, prior probability, posterior probability. x + 54 hlm. ; gamb. ; lamp. ; tab. Bibliografi : 9 (1986-2006)"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2007
S27733
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farah Amalia
"Indonesia merupakan negara di dunia yang memiliki aktivitas seisimik yang tinggi. Jawa barat merupakan salah satu provinsi di Indonesia yang rawan terjadi gempa, karena di daerah Jawa Barat terdapat zona subduksi dan sesar geser. Kemunculan gempa berkekuatan besar dapat menyebabkan kerusakan dan menelan banyak korban jiwa. Oleh karena itu, ingin diketahui berapa probabilitas terjadinya gempa bumi berkekuatan besar di daerah Jawa Barat. Hal ini bertujuan untuk memprediksi kapan dan dimana gempa yang berkekuatan besar itu akan berpotensi besar terjadi. Salah satu metode statistika yang dapat digunakan untuk memecahkan masalah ini adalah pemodelan Bayesian. Penelitian ini menggunakan data gempa bumi di Jawa Barat pada tahun 1960-2009. Data tersebut berupa variabel lintang, bujur, kedalaman pusat gempa, dan kekuatan gempa. Variabel lintang, bujur, dan kedalaman pusat gempa digunakan untuk mengelompokkan titik-titik gempa menjadi wilayah-wilayah rawan gempa dengan menggunakan metode two step cluster. Selanjutnya, pemodelan bayesian dilakukan di setiap wilayah rawan gempa tersebut untuk memprediksi probabilitas kemunculan gempa berkekuatan besar di daerah ini. Ternyata wilayah yang memiliki potensi kemunculan gempa berkekuatan besar yang cukup tinggi adalah kabupaten Garut, Bandung, dan laut Indonesia."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Karintya Aisya
"Asuransi mobil merupakan aspek penting dalam masyarakat modern untuk melindungi individu dari kerugian finansial akibat kejadian tak terduga pada kendaraan mereka. Model penetapan tarif asuransi mobil yang digunakan sebelumnya umumnya mengasumsikan bahwa frekuensi klaim dan tingkat keparahan klaim adalah independen. Namun, seiring perkembangan waktu, penelitian lebih lanjut telah menghasilkan model klaim asuransi yang lebih canggih dengan mempertimbangkan adanya ketergantungan antara frekuensi klaim dan tingkat keparahan klaim. Meski begitu, model-model tersebut memiliki beberapa keterbatasan yang menyebabkan mereka belum mampu menangkap sepenuhnya interaksi kompleks antara frekuensi dan tingkat keparahan klaim. Selain itu, pembahasan mengenai proses yang mendasari ketergantungan tersebut masih sangat terbatas. Oleh karena itu, penelitian ini bertujuan untuk menunjukkan hubungan ketergantungan antara frekuensi klaim dan tingkat keparahan klaim, serta mempelajari dan memahami konsep bonus hunger sebagai elemen perilaku pengemudi yang menjadi fenomena umum dalam kontrak asuransi dengan sistem bonus-malus. Dalam penelitian ini, konsep bonus hunger dimasukkan ke dalam model frekuensi-keparahan klaim yang digabungkan dengan sistem bonus-malus standar dan direpresentasikan sebagai tingkat retensi optimal, yang dihitung menggunakan algoritma Lemaire. Model frekuensi-keparahan klaim ini didasarkan pada kerangka Generalized Linear Model (GLM), di mana frekuensi klaim dimodelkan menggunakan model regresi binomial negatif, sementara tingkat keparahan klaim dimodelkan menggunakan model regresi Gamma. Sementara itu, sistem bonus-malus dimodelkan dengan pendekatan model relasi tipe Bayesian. Hasil aplikasi data menunjukkan adanya hubungan ketergantungan antara frekuensi klaim dan tingkat keparahan klaim, serta mengonfirmasi fenomena bonus hunger sebagai tingkat retensi optimal dalam sistem bonus-malus.

Automobile insurance is a necessary aspect of modern society for protecting individuals from the financial losses of their vehicles due to accidents, theft, natural disasters, or other unforeseen events. Within the automobile insurance industry, actuarial ratemaking models are essential in modeling both premiums and insurance claims for each policyholder. Earlier auto-ratemaking models have traditionally assumed independence between claim frequency and severity. Since then, subsequent studies have developed more sophisticated insurance claim models that accommodate dependence between claim frequency and severity. However, these models have several limitations that prevent them from accurately capturing the complex interactions between claim frequency and severity. Moreover, there has been little discussion as to the underlying process that causes this dependence. Therefore, this study aims to showcase the dependent relationship between claim frequency and severity, as well as study and understand bonus hunger as a behavioral element of the driver and a prevalent phenomenon in insurance contracts within the bonus-malus system. The bonus hunger is incorporated into a frequency-severity model coupled with the standard bonus-malus system and represented as an optimal retention level, calculated using the Lemaire algorithm. The frequency-severity model is based on a generalized linear model (GLM) framework in which the frequency is modeled using the negative binomial regression model. In contrast, the severity is modeled using the Gamma regression model. Meanwhile, the bonus-malus system is modeled using a Bayesian-type relativity model. The data application results show the dependent relationship between claim frequency and severity, as well as the bonus hunger phenomenon as an optimal retention level."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bernardo, Jose M.
Chichester: John Wiley & Sons, 1994
519.542 BER b
Buku Teks SO  Universitas Indonesia Library
cover
Sayidul Fikri
"Efektivitas Wayfinding adalah kesuksesan interaksi antara faktor manusia dan faktor lingkungan yang mampu membuat seseorang berhasil berpindah dari posisi sekarang ke posisi yang ingin dituju dengan waktu yang sesuai dengan kebutuhan. Saat ini proses tersebut belum dimodelkan untuk menggambarkan hubungan dari kesuksesan efektivitas wayfinding tersebut. Penelitian ini bertujuan untuk memodelkan komplek sistem dari aktivita wayfinding dengan menggunakan Bayesian Network, dan model tersebut menyesuaikan dengan faktor-faktor yang di aplikasikan di Terminal 2 Bandara Soekarno Hatta. Model menjelaskan bahwa faktor manusia memiliki dampak yang lebih besar dari faktor lingkungan dalam mempengaruhi efektivitas wayfinding. Untuk Faktor manusia sendiri faktor yang paling berpengaruh adalah previous familiarity diikuti dengan cognitive spatial skill. Model ini juga memprediksi bahwa navigation pathway memiliki pengaruh lebih besar dari terminal design dalam memberikan dampak pada faktor lingkungan.

Effective Wayfinding is the successful interplay of human and environmental factors resulting in a person successfully moving from their current position to a desired location in a timely manner. To date this process has not been modelled to reflect this interplay. This paper proposes a complex modelling system approach of wayfinding by using Bayesian Networks to model this process, and applies the model to airports. The model suggests that human factors have a greater impact on effective wayfinding in airports than environmental factors. The greatest influences on human factors are found to be the level of previous experienced by travellers and their cognitive and spatial skills. The model also predicted that the navigation pathway that a traveller must traverse has a larger impact on the effectiveness of an airport rsquo s environment in promoting effective wayfinding than the terminal design.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nafia Aryuna
"Tugas akhir ini membahas penaksiran parameter 0 (probabilitas sukses) pada m distribusi binmial, dimana ada keterkaitan antar parameter 0 pada masing-masing populasi. metode penaksiran yang digunakan adalah metode Bayes. pada metode ini, prosedur yang dilakukan meliputi transformasi parameter 0 ke bentuk logit yaitu a, penentuan prior dan likelihood, pembentukan posterior, modifikasi likelihood, hingga akhirnya diperoleh m taksiran dari a yang akan digunakan untuk menaksir 0 pada tiap populasi. hasil yang diperoleh diaplikasikan pada penaksiran proporsi jumlah perempuan di 10 kursus pada suatu lembaga"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27843
UI - Skripsi Open  Universitas Indonesia Library
cover
Margaretha
"Distribusi Exponentiated Exponential (EE) adalah pengembangan dari distribusi Exponential dengan cara menambahkan sebuah parameter bentuk alpha. Distribusi ini digunakan untuk mengatasi masalah ketidakfleksibilitas dari distribusi Exponential. Untuk melakukan inferensi mengenai permasalahan yang dimodelkan dengan distribusi EE, perlu dilakukan penaksiran parameter. Pada skripsi ini akan dibahas mengenai penaksiran parameter distribusi dari distribusi Exponentiated Exponential pada data tersensor kiri menggunakan metode Bayesian. Prosedur penaksiran meliputi penentuan distribusi prior yaitu digunakan distribusi prior konjugat, pembentukan fungsi likelihood dari data tersensor kiri, dan pembentukan distribusi posterior. Penaksir Bayes kemudian diperoleh dengan cara meminimumkan risiko posterior berdasarkan fungsi loss Squared Error Loss Function (SELF) dan Precautionary Loss Function (PLF). Kemudian setelah diperoleh perumusan penaksir Bayes, simulasi data dilakukan untuk membandingkan hasil taksiran parameter menggunakan fungsi loss SELF dan PLF yang dilihat dari nilai Mean Square Error (MSE) yang dihasilkan. Fungsi loss dikatakan lebih efektif digunakan dalam merumuskan penaksir Bayes apabila penaksir Bayes yang diperoleh menghasilkan nilai MSE yang lebih kecil. Berdasarkan hasil simulasi, fungsi loss PLF lebih efektif digunakan untuk alpha≤1, sedangkan fungsi loss SELF lebih efektif digunakan untuk alpha>1.

Exponentiated Exponential (EE) distribution is the development of Exponential Distribution by adding alpha as a shape parameter. This distribution can solve unflexibility issue in Exponential distribution. In order to make inferences about any cases modeled with EE distribution, parameter estimation is required. This thesis will discuss about parameter estimation of Exponentiated Exponential distribution for left censored data using Bayesian method. Parameter estimation procedure are selection of prior distribution which is conjugate prior, likelihood construction for left censored data, and then forming posterior distribution. Bayes estimator can be obtained by minimize posterior risk based on Squared Error Loss Function (SELF) and Precautionary Loss Function (PLF). After Bayes estimator is obtained, simulation is done to compare the results of Bayes estimator using SELF and PLF which are seen from the result of Mean Square Error (MSE). Loss function is said to be more effective to obtain Bayes estimator if the resulting Bayes estimator yield smaller MSE. Based on simulation, PLF more effective for alpha ≤ 1, while SELF more effective for alpha>1."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bulan Firdanisa
"Penelitian bioinformatika sering diterapkan untuk mempelajari penyakit dalam tubuh manusia. Penelitian yang sampai saat ini masih aktif dilakukan ialah penelitian terhadap pasien penderita kanker. Tujuan dari berbagai penelitian ini yaitu untuk menemukan pengobatan terbaik bagi pasien penderita kanker. Salah satu pengobatan yang baru ini muncul dikenal sebagai imunoterapi. Imunoterapi memungkinkan sel-sel imun tubuh kita sendiri digunakan untuk melawan sel-sel kanker. Instrumen utama dalam penelitian terhadap efektifitas imunoterapi juga kasus bioinformatika lainnya ialah data ekspresi gen. Namun, pada data ekspresi gen seringkali ditemukan nilai yang hilang atau missing values yang biasanya disebabkan oleh kerusakan gambar atau kesalahan dalam proses hibridisasi. Keberadaan missing values pada data ekspresi gen dapat menyebabkan kesulitan pada analisis lebih lanjut, di mana banyak analisis ekspresi gen memerlukan data yang lengkap seperti klasifikasi dan pengelompokan. Oleh karena itu, perlu dilakukan imputasi terhadap missing values agar analisis yang dilakukan dapat lebih akurat. Pada penelitian ini dilakukan imputasi menggunakan metode Bi-BPCA. Bi-BPCA merupakan metode imputasi dengan mengombinasikan analisis biclustering dan imputasi BPCA. Metode Bi-BPCA diterapkan pada data ekspresi gen di sekitar kanker setelah dilakukan imunoterapi. Setelah itu, performa dari metode Bi-BPCA dilihat dengan membandingkan hasil imputasi metode Bi-BPCA dengan metode imputasi lainnya diantaranya imputasi menggunakan rata-rata baris, rata-rata kolom, dan metode imputasi BPCA melalui nilai NRMSE. Selain itu, koefisien korelasi Pearson digunakan untuk menghitung korelasi antara nilai hasil imputasi metode Bi-BPCA dengan nilai aslinya. Berdasarkan penelitian ini metode Bi-BPCA menghasilkan NRMSE kurang dari 0.6 untuk missing rate 1-30%, lebih rendah dibandingkan NRMSE dari metode imputasi lainnya. Kemudian, metode Bi-BPCA menghasilkan nilai koefisien korelasi Pearson mayoritas di atas 0.9 mendekati 1. Hasil ini menunjukkan bahwa metode Bi-BPCA menghasilkan nilai imputasi yang lebih baik untuk menggantikan missing values dibandingkan dengan metode imputasi BPCA, rata-rata kolom, dan rata-rata baris.

Bioinformatics research is often applied to study diseases in the human body. Research that is still actively being carried out is research on cancer patients. The aim of those studies is to find the best treatment for cancer patients. One treatment that has recently emerged is known as immunotherapy. Immunotherapy allows our body's own immune cells to be used to fight cancer cells. The main instrument in research on the effectiveness of immunotherapy as well as other cases of bioinformatics is gene expression data.. However, in gene expression data, it is often found missing values which are usually caused by image defects and errors in the hybridization process. The existence of missing values in gene expression data can cause difficulties in further analysis, where many analysis of gene expression requires complete data such as classification and clustering. Therefore, it is necessary to impute the missing values so that the analysis can be carried out more accurately. In this study, imputation was carried out using the Bi-BPCA method. Bi-BPCA is an imputation method by combining biclustering analysis and BPCA imputation. The Bi-BPCA method was applied to gene expression data around cancer after immunotherapy. After that, the performance of the Bi-BPCA method was seen by comparing the imputation results of the Bi-BPCA method with other imputation methods including imputation using row averages, column averages, and the BPCA imputation method through the NRMSE value. In addition, the Pearson correlation coefficient was used to calculate the correlation between the imputed value of the Bi-BPCA method and the original value. Based on this study, the Bi-BPCA method produces NRMSE values less than 0.6 for missing rates 1 to 30 percent, which is lower than NRMSE from other imputation methods. In addition, the Bi-BPCA method produces in a majority Pearson correlation coefficient above 0.9. These results indicate that the Bi-BPCA method produces better imputation values to replace the missing values."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>