Ditemukan 34366 dokumen yang sesuai dengan query
Elandt-Johnson, Regina C.
New York: John Wiley & Sons, 1980
312.015 ELA s
Buku Teks SO Universitas Indonesia Library
Cox, D.R. (David Roxbee)
London: Chapman & Hall, 1984
519.5 COX a
Buku Teks SO Universitas Indonesia Library
Lee, Elisa T.
New york: John Wiley & Sons, 1992
610.7 LEE s
Buku Teks SO Universitas Indonesia Library
Texas: Stata Press, 2008
519.546 INT
Buku Teks SO Universitas Indonesia Library
Lee, Elisa T.
Hoboken, NJ: John Wiley & Sons, 2013
610.724 LEE s
Buku Teks SO Universitas Indonesia Library
Runkler, Thomas A.
"This book is a comprehensive introduction to the methods and algorithms and approaches of modern data analytics. It covers data preprocessing, visualization, correlation, regression, forecasting, classification, and clustering. It provides a sound mathematical basis, discusses advantages and drawbacks of different approaches, and enables the reader to design and implement data analytics solutions for real-world applications. Much of the content is based on the results of industrial research and development projects at Siemens.
"
Wiesbaden: Springer, 2012
e20406681
eBooks Universitas Indonesia Library
Joan Bidadari Annandale
"Penyakit Alzheimer adalah penyakit progresif yang dimulai dengan hilangnya ingatan ringan dan berkembang hingga hilangnya kemampuan bicara dan respon terhadap lingkungan. Penyakit ini belum dapat disembuhkan, dan pengobatan saat ini hanya berfungsi mengurangi gejala sementara. Oleh karena itu, penting untuk mengidentifikasi risiko utama pengembangan Alzheimer dan memberikan diagnosis yang tepat guna mendukung penelitian lebih lanjut. Model regresi Cox-Proportional Hazard sering digunakan untuk menangani data survival tersensor, tetapi saat ini, machine learning menunjukkan potensi besar. Dua model machine learning, Random Survival Forest dan Gradient Boosting Survival Analysis, mampu menangani data survival dan data tersensor tanpa memerlukan asumsi parameter. Kedua model ini juga menghindari overfitting dan lebih mudah diinterpretasi dibandingkan model non-parametrik lainnya. Hasil pada data Alzheimer menunjukkan bahwa Gradient Boosting Survival Analysis memiliki performa terbaik dengan nilai C-index 0.8503, diikuti oleh Random Survival Forest dengan nilai 0.8286. Model regresi Cox-PH memiliki kinerja terendah dengan nilai C-index 0.8092, dan data Alzheimer yang digunakan tidak memenuhi asumsi proportional hazard. Model Gradient Boosting Survival Analysis dan Random Survival Forest mengidentifikasi CDRSB dan FDG sebagai risiko terpenting, sedangkan model Cox-PH mengidentifikasi AV45 dan FDG.
Alzheimer's disease is a progressive disease that begins with mild memory loss and progresses to loss of speech and response to the environment. There is no cure for the disease, and current treatments only temporarily reduce symptoms. Therefore, it is important to identify the main risk factors for developing Alzheimer's and provide an accurate diagnosis to support further research. The Cox-Proportional Hazard regression model is often used to handle censored survival data, but currently, machine learning shows potential. Two machine learning models, Random Survival Forest and Gradient Boosting Survival Analysis, are able to handle survival data and censored data without requiring parameter assumptions. Both models also avoid overfitting and are easier to interpret than other non-parametric models. The results on Alzheimer's data show that Gradient Boosting Survival Analysis has the best performance with a C-index value of 0.8503, followed by Random Survival Forest with a value of 0.8286. The Cox-PH regression model has the lowest performance with a C-index value of 0.8092, and the data used does not meet the proportional hazard assumption. The Gradient Boosting Survival Analysis and Random Survival Forest models identified CDRSB and FDG as the most important risks, while the Cox-PH model identified AV45 and FDG."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Cornell, John A.
New York: John Wiley & Sons, 1981
519.535 COR e (1)
Buku Teks SO Universitas Indonesia Library
Tsischitzis, Dionysios C.
Englewood Cliffs, NJ: Prentice-Hall, 1982
005.74 TSI d
Buku Teks SO Universitas Indonesia Library
Harrell, Frank E., Jr.
"This highly anticipated second edition features new chapters and sections, 225 new references, and comprehensive R software. In keeping with the previous edition, this book is about the art and science of data analysis and predictive modeling, which entails choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for fitting nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with too many variables to analyze and not enough observations, and powerful model validation techniques based on the bootstrap. The reader will gain a keen understanding of predictive accuracy, and the harm of categorizing continuous predictors or outcomes. This text realistically deals with model uncertainty, and its effects on inference, to achieve safe data mining. It also presents many graphical methods for communicating complex regression models to non-statisticians."
Switzerland: Springer International Publishing, 2015
e20510032
eBooks Universitas Indonesia Library