Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4931 dokumen yang sesuai dengan query
cover
Andersen, H.H.
New York: Pergamon Press , 1977
539.754 AND h
Buku Teks  Universitas Indonesia Library
cover
Ziegler, J.F.
New York: Pergamon Press , 1977
539.754 ZIE h
Buku Teks  Universitas Indonesia Library
cover
Ziegler, J.F.
New York: Pergamon Press, 1980
R 539.754 ZIE h
Buku Referensi  Universitas Indonesia Library
cover
Ziegler, J.F.
New York: Pergamon Press, 1985
R 539.754 ZIE s
Buku Referensi  Universitas Indonesia Library
cover
Rand, D.A.J.
Cambridge, UK: The Royal Society of Chemistry , 2008
333.794 RAN h
Buku Teks  Universitas Indonesia Library
cover
Rohmad Sigit Eko Budi Prasetyo
"[ABSTRAK
Degradasi sifat mekanik zirkaloi-4 sebagai kelongsong bahan bakar nuklir akibat interaksinya dengan hidrogen tidak bisa dihindari bahkan selama periode operasi normal reaktor. Penelitian ini mengidentifikasi fasa hidrida dengan mengkondisikan zirkaloi-4 berada pada lingkungan hidrogen (hidrogenasi) pada beberapa tingkatan suhu serta efeknya terhadap zirkaloi-4 berdasarkan perubahan mikrostruktur dan sifat mekanik. Potongan material kelongsong bahan bakar nuklir berbasis zirkaloi-4 pra iradiasi digunakan dalam penelitian ini. Karakterisasi sebelum proses hidrogenasi meliputi massa,komposisi,fasa, mikrostruktur dan kekerasan mikro dilakukan sebagai data awal. Potongan material zirkaloi-4 dipanaskan pada beberapa tingkatan suhu, antara lain 3500C, 5000C, 5500C dan 6000C selama 2 jam sebelum dihidrogenasi dengan tekanan mencapai 1200 mbar selama kurang lebih 2 jam. Hasil perhitungan yang diplot pada diagram Pressure-Composition-Isotherm (PCI) menunjukkan bahwa penyerapan hidrogen pada suhu 3500C sebesar 0,17 persen berat dan mencapai nilai 0,74 persen berat pada suhu 6000C. Hal ini dikonfirmasi dengan ONH Analyzer yang mengukur kandungan hidrogen dalam rentang 10 ppm pada 3500C dan 1357 ppm pada 6000C. Keberadaan hidrogen dalam zirkaloi-4 terdeteksi pada munculnya puncak lemah δ-hydride pada identifikasi material uji yang dihidrogenasi pada suhu 6000C dan perubahan mikrostruktur yang memunculkan pertumbuhan struktur yang tampak seperti jarum pada setiap kenaikan suhu hidrogenasi. Kekerasan mikro pada pemanasan tanpa hidrogenasi pada suhu 6000C bernilai 150,66 HV sedikit dibawah nilai kekerasan pada material uji tanpa perlakuan yang bernilai 155,14 HV, sedangkan nilai kekerasan pada material uji yang dihidrogenasi pada suhu 6000C mengalami kenaikan cukup signifikan yang mencapai 194,04 HV sehingga pada kondisi awal LOCA, degradasi sifat mekanik akibat pengaruh hidrogen memerlukan evaluasi menyeluruh terkait dengan keselamatan operasi reaktor nuklir.

ABSTRACT
Degradation of zircaloy-4 mechanical properties as nuclear fuel cladding due to its interaction with hydrogen during reactor normal operation is inevitable. This experiment identifies hydrides phase after gaseous hydriding at elevated temperature and its effect based on microstructure and mechanical properties evolution. Characterization before hydrogenation process include mass, composition, phase, microstructure and microhardness performed as the initial data. The unirradiated zircaloy-4 cladding materials were annealed 3500C, 5000C, 5500C and 6000C for couple hours before hydrided under hydrogen pressure until 1200 mbar for couple hours too. Calculation results are plotted on the Pressure-Composition-Isotherm (PCI) diagram that shows the hydrogen absorption only 0,17 %wt at 3500C and reach a 0.74 %wt at 6000C. This result is confirmed by the ONH Analyzer that measures the hydrogen content in the range of 10 ppm at 3500C and 1357 ppm at 6000C. Observation using X-Ray Diffractometer shows very weak of δ-hydride peaks based on fitting with hydride database. The optical microscope and scanning electron microscope confirms the presence of hydrides by describing the growth of needle-like as the increase in temperature. Results of microhardness test on annealed zircaloy-4 at 6000C without hydrogen have value about 150,66 HV, lower than as received material (155,14 HV), but material microhardness start to increase from the hydriding at 3500C and reach a significant increase when hydriding at 6000C (194,04 HV). Based on the data that shown in this study indicate that under early LOCA condition, degradation of mechanical properties due to the influence of hydrogen requires a evaluation related to the safety of nuclear reactors operation., Degradation of zircaloy-4 mechanical properties as nuclear fuel cladding due to its interaction with hydrogen during reactor normal operation is inevitable. This experiment identifies hydrides phase after gaseous hydriding at elevated temperature and its effect based on microstructure and mechanical properties evolution. Characterization before hydrogenation process include mass, composition, phase, microstructure and microhardness performed as the initial data. The unirradiated zircaloy-4 cladding materials were annealed 3500C, 5000C, 5500C and 6000C for couple hours before hydrided under hydrogen pressure until 1200 mbar for couple hours too. Calculation results are plotted on the Pressure-Composition-Isotherm (PCI) diagram that shows the hydrogen absorption only 0,17 %wt at 3500C and reach a 0.74 %wt at 6000C. This result is confirmed by the ONH Analyzer that measures the hydrogen content in the range of 10 ppm at 3500C and 1357 ppm at 6000C. Observation using X-Ray Diffractometer shows very weak of δ-hydride peaks based on fitting with hydride database. The optical microscope and scanning electron microscope confirms the presence of hydrides by describing the growth of needle-like as the increase in temperature. Results of microhardness test on annealed zircaloy-4 at 6000C without hydrogen have value about 150,66 HV, lower than as received material (155,14 HV), but material microhardness start to increase from the hydriding at 3500C and reach a significant increase when hydriding at 6000C (194,04 HV). Based on the data that shown in this study indicate that under early LOCA condition, degradation of mechanical properties due to the influence of hydrogen requires a evaluation related to the safety of nuclear reactors operation.]"
2015
T44430
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Raihan Pratama
"Bioenergy with carbon capture and storage (BECCS) memiliki potensi besar dalam mengurangi emisi karbon dari atmosfer hingga dapat mencapai emisi negatif. Teknologi ini dapat diintegrasikan pada sistem poligenerasi pembangkit listrik biomassa dan green chemicals seperti metanol. Penelitian ini bertujuan untuk memperoleh efisiensi energi sistem secara keseluruhan, biaya produksi dan CO2 avoidance cost (CAC), serta nilai emisi CO2eq dari integrasi BECCS pada sistem poligenerasi. Aspen Plus v.11 digunakan untuk simulasi proses sistem poligenerasi, sedangkan unit CCS disimulasikan dengan Aspen HYSYS v.11. Dengan memvariasikan kapasitas produksi listrik, tandan kosong kelapa sawit (TKKS) digunakan sebagai bahan bakar pembangkit listrik biomass integrated gasification combined cycle (BIGCC) sehingga dihasilkan gas buang mengandung CO2 yang ditangkap untuk sintesis metanol dan CCS. Hidrogen untuk sintesis green methanol diproduksi melalui elektrolisis PEM dengan variasi dua sumber energi listrik terbarukan, yaitu energi surya (PV-PEM) dan energi geotermal (GEO-PEM). Analisis lingkungan dilakukan dengan metode life cycle assessment (LCA) dengan lingkup cradle-to-gate dan analisis keekonomian dilakukan dengan metode levelized cost. Hasil penelitian menunjukkan bahwa efisiensi sistem keseluruhan lebih tinggi pada skema PV-PEM (11,33%) daripada GEO-PEM (7,05%). Sistem BECCS yang diintegrasikan pada pembangkit listrik BIGCC menunjukkan emisi negatif (-1,00 sampai -0,76 kg CO2eq/kWh). Untuk sintesis metanol, nilai emisi dengan skema PV-PEM (-1,14 sampai -1,28 kg CO2eq/kg MeOH) lebih tinggi daripada skema GEO-PEM (-1,52 sampai -1,65 kg CO2eq/kg MeOH). Pembangkit dengan kapasitas 30,87 MW memiliki biaya produksi dan nilai CAC (0,181 USD/kWh dan 67,66 USD/ton CO2) yang lebih besar daripada kapasitas 50 MW (0,139 USD/kWh dan 56,06 USD/ton CO2). Skema PV-PEM menghasilkan biaya produksi metanol (1.011-1.049 USD/ton) yang lebih besar daripada skema GEO-PEM (967-1.005 USD/ton).

Bioenergy with carbon capture and storage (BECCS) has enormous potential to reduce carbon emissions from the atmosphere that may reach net-negative emissions. This technology may be integrated within the polygeneration system of biomass power plant and green chemicals, such as methanol. This research aims to obtain the system’s overall energy efficiency, the production and CO2 avoidance cost, as well as the emission factor of integrating BECCS in the polygeneration system. The processes of polygeneration system are simulated in Aspen Plus v.11; meanwhile, the CCS unit processes are simulated in Aspen HYSYS v.11. By varying the electricity production capacities, oil palm empty fruit bunches (OPEFB) are used as fuel for biomass integrated gasification combined cycle (BIGCC) power plant to produce exhaust gas containing CO2, which is captured for the methanol synthesis and CCS. Hydrogen for green methanol synthesis is produced through PEM electrolysis powered by two different renewable energy sources, i.e., solar (PV-PEM) and geothermal energy (GEO-PEM). The environmental aspects are assessed with the life cycle assessment (LCA) with a cradle-to-gate scope, and the economic aspects are analyzed with the levelized cost method. The research shows that the overall system efficiency is higher in the PV-PEM scheme (11.33%) than in the GEO-PEM scheme (7.05%). The BECCS system integrated into the polygeneration system exhibits negative emissions (-1.00 to -0.76 kg CO2eq/kWh). The emission value for the methanol synthesis with the PV-PEM scheme (-1.14 to -1.28 kg CO2eq/kg MeOH) is higher than that with the GEO-PEM (-1.52 to -1.65 kg CO2eq/kg MeOH). The 30,87 MW-capacity BIGCC has a higher production cost and CAC value (0.181 USD/kWh and 67.66 USD/ton CO2) than the 50-MW capacity (0.139 USD/kWh and 56.06 USD/ton CO2). The PV-PEM scheme results in higher methanol production costs (1,011-1,049 USD/ton) than of the GEO-PEM scheme (967-1,005 USD/ton)."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Drennen, Thomas E.
Amsterdam: Elsevier, 2007
333.794 DRE p
Buku Teks  Universitas Indonesia Library
cover
Fikri Eli Rosady
"Dengan permintaan hidrogen yang tinggi di masa depan, pemanfaatan energi dingin tampaknya menjadi solusi alternatif untuk meningkatkan rantai ekonomi hidrogen dengan memaksimalkan pemanfaatan limbah energi dingin selama regasifikasi. Suhu rendah hidrogen cair (-253℃ pada 1 atm) akan memberikan beragam aplikasi yang dapat diimplementasikan. Makalah ini mengusulkan pembangkit daya dan unit pemisahan udara sebagai proses integrasi dari regasifikasi hidrogen cair. Untuk mencapai desain proses terbaik, pemilihan proses dibuat dengan mempertimbangkan tingginya pembangkitan daya dan rendahnya kerusakan eksergi. Desain proses terpilih akan diintegrasikan dengan unit pemisahan udara dengan 4 skenario laju alir dan dioptimasi untuk mendapatkan kondisi ideal dengan maksimal energi listrik hasil dan kerusakan eksergi yang minimum. Solusi ideal setiap scenario akan dievaluasi keekonomiannya. Dari hasil pemilihan proses, cascade rankine cycle mampu memulihkan energi pencairan hidrogen hingga 11,46 % dan menghasilkan kerusakan eksergi yang paling minim. Cascade rankine cycle kemudian diintegrasikan dengan unit pemisahan udara dan dioptimasi. Dari hasil simulasi, semakin tinggi laju alir udara akan menghasilkan energi listrik yang semakin rendah tetapi mampu mengurangi kerusakan eksergi hingga 1700 kW. Dari hasil perhitungan, skenario D, dengan laju alir 12000 kg/jam mampu memberikan internal rate of return paling tinggi (23,96%) dan payback period tersingkat 5,14 tahun dibanding dengan skenario lainnya. 

With the future's high demand for hydrogen, utilizing cold energy appears to be an alternative solution to enhance the hydrogen economic chain by maximizing the use of cold energy waste during regasification. The low temperature of liquid hydrogen (-253℃ at 1 atm) offers various applicable implementations. This paper proposes integrating a power plant and an air separation unit with the liquid hydrogen regasification process. To achieve the optimal process design, the selection process considers both high power generation and low exergy destruction. The chosen process design will be integrated with the air separation unit under four different flow rate scenarios and optimized to obtain ideal conditions, maximizing electrical energy output and minimizing exergy destruction. The economic feasibility of the ideal solution for each scenario will be evaluated. Based on the process selection results, the cascade Rankine cycle can recover up to 11.46% of the hydrogen liquefaction energy and produce the least exergy destruction. The cascade Rankine cycle is then integrated with the air separation unit and optimized. Simulation results indicate that higher air flow rates yield lower electrical energy but can reduce exergy destruction by up to 1700 kW. According to economic calculations, scenario D, with a flow rate of 12,000 kg/hour, provides the highest internal rate of return (23.96%) and the shortest payback period of 5.14 years compared to other scenarios."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Littmark, U.
New York: Pergamon Press, 1980
R 539.754 LIT h
Buku Referensi  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>