Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5287 dokumen yang sesuai dengan query
cover
Chichester: John Wiley & Sons, 1981
519.535 INT
Buku Teks  Universitas Indonesia Library
cover
Chui, Charles K.
"The subject of multivariate splines has become a rapidly growing field of mathematical research. The author presents the subject from an elementary point of view that parallels the theory and development of univariate spline analysis. To compensate for the missing proofs and details, an extensive bibliography has been included. There is a presentation of open problems with an emphasis on the theory and applications to computer-aided design, data analysis, and surface fitting. Applied mathematicians and engineers working in the areas of curve fitting, finite element methods, computer-aided geometric design, signal processing, mathematical modelling, computer-aided design, computer-aided manufacturing, and circuits and systems will find this monograph essential to their research."
Philadelphia: Society for Industrial and Applied Mathematics, 1991
e20451254
eBooks  Universitas Indonesia Library
cover
Cooley, William W.
New York: John Wiley & Sons, 1971
519.535 COO m
Buku Teks  Universitas Indonesia Library
cover
Cooley, William W.
Malabar, Florida: Robert E. Krieger, 1986
519.535 COO m
Buku Teks  Universitas Indonesia Library
cover
"For over 30 years, this text has provided students with the information they need to understand and apply multivariate data analysis. This text provides an applications-oriented introduction to multivariate analysis for the non-statistician. By reducing heavy statistical research into fundamental concepts, the text explains to students how to understand and make use of the results of specific statistical techniques. In this revision, the organization of the chapters has been greatly simplified. New chapters have been added on structural equations modeling, and all sections have been updated to reflect advances in technology, capability, and mathematical techniques."
Harlow, Essex: Pearson, 2014
519.535 MUL
Buku Teks  Universitas Indonesia Library
cover
Schafer, J.L.
Boca Raton: Chapman & Hall, 1997
519.535 SCH a
Buku Teks  Universitas Indonesia Library
cover
Gnanadesikan, Ram, 1932-
New York: John Wiley & Sons, 1977
519.535 GNA m (1)
Buku Teks  Universitas Indonesia Library
cover
Kutyniok, Gitta, editor
"Directional multiscale systems, particularly shearlets, are now having the same dramatic impact on the encoding of multidimensional signals. Since its introduction about five years ago, the theory of shearlets has rapidly developed and gained wide recognition as the superior way of achieving a truly unified treatment in both a continuous and a digital setting. By now, it has reached maturity as a research field, with rich mathematics, efficient numerical methods, and various important applications."
New York: [Springer, ], 2012
e20419429
eBooks  Universitas Indonesia Library
cover
Nurzaman
"Pada setiap analisis statistik memungkinkan berhadapan dengan missing values atau missing data karena pada saat survei kemungkinan ada responden yang tidak dapat menjawab pertanyaan atau tidak ingin menjawab pertanyaan pada saat wawancara survei. Missing values tidak dapat langsung dilakukan analisis menggunakan analisis data lengkap, oleh karena itu missing values telah menjadi masalah yang sering dihadapi oleh para peneliti. Dataset survei biasanya terdiri dari sejumlah besar variabel kontinu salah satunya berdistribusi multivariat normal. Salah satu cara untuk menangani missing values dapat dilakukan dengan imputasi, yaitu proses pengisian atau penggantian missing values pada dataset dengan nilai-nilai yang mungkin berdasarkan informasi yang didapatkan pada dataset tersebut. Penelitian ini akan menerapkan metode sequence regression multivariate imputation (SRMI) untuk imputasi missing values pada data multivariat normal.
SRMI merupakan metode imputasi ganda yang nilai imputasinya didapatkan dari model sequence of regression yaitu setiap variabel yang mengandung missing values diregresikan terhadap semua variabel lain yang tidak mengandung missing values sebagai variabel prediktor. Cara mendapatkan nilai imputasi digunakan pendekatan iterasi untuk menarik nilai dari distribusi posterior prediktif pada missing values di bawah masing-masing model regresi secara beruntun. Penelitian ini menggunakan data multivariat normal yang telah dibangkitkan sebanyak 500 observasi dengan menggunakan lima nilai imputasi ganda dan hasil evaluasi kualitas imputasi menggunakan Root Mean Square Error (RMSE). Hasil evaluasi kualitas imputasi dapat dikatakan baik jika nilai RMSE semakin kecil, maka eror semakin kecil atau nilai estimasi mendekati nilai sebenarnya (Chai & Draxler, 2014) dan hasil yang didapatkan nilai RMSE kecil sehingga SRMI dapat diterapkan untuk melakukan imputasi terhadap data multivariat normal.

Missing values are the absence of data items for an observation or more observations that can result in the loss of certain information. During surveys, there are often missing values or missing data because there are likely respondents who cannot answer the question or do not want to answer the question. That is a problem for researchers because, with missing values, the results of observation cannot be analyzed properly. Survey datasets usually consist of continuous variables, one of which is a normal multivariate distribution. One way to deal with missing values ​​can be done by imputation, which is the process of filling or replacing missing values ​​in a dataset with possible values ​​based on the information obtained in the dataset. This study will apply the sequence regression multivariate imputation (SRMI) method for missing values ​​imputation in normal multivariate data.
SRMI is a multiple imputation method whose implication value is obtained from the sequence of regression model, that is, every variable containing missing values ​​is regressed on all other variables that do not contain missing values ​​as predictor variables. The method of obtaining imputation values ​​is used by the iterative approach to drawing values ​​from the predictive posterior distribution in the missing values ​​below each successive regression model. This study uses multivariate normal data that has been generated a total of 500 observations using five multiple imputation values ​​and the evaluation results using Root Mean Square Error (RMSE) which have little value in applying to normal multivariate data so SRMI can be applied to impute normal multivariate data.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Boca Raton: CRC Press, Taylor & Francis Group, 2008
519.535 ANA
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>