Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 12078 dokumen yang sesuai dengan query
cover
Barndorff-Nielsen, Ole E.
Chichester: John Wiley & Sons, 1978
519.5 BAR i
Buku Teks  Universitas Indonesia Library
cover
Junifsa Afly Prameswari
"Distribusi Negative Binomial-Generalized Exponential (NB-GE) merupakan distribusi yang mampu memodelkan data overdispersi dengan extreme excess zeros yaitu lebih dari 80% angka nol dalam data. Distribusi Negative Binomial-Generalized Exponential (NB-GE) merupakan distribusi campuran hasil dari mixing antara distribusi Negative Binomial (NB) dengan distribusi Generalized Exponential (GE). Pembentukan distribusi Negative Binomial-Generalized Exponential (NB-GE) serta karakteristik-karakteristik distribusi Negative Binomial-Generalized Exponential (NB-GE) seperti fungsi kepadatan peluang, momen ke-, mean, variansi, koefisien skewness dan koefisien kurtosis dibahas pada pada skripsi ini. Penaksiran parameter-parameter dari distribusi Negative Binomial-Generalized Exponential (NB-GE) menggunakan metode maximum likelihood. Sebagai ilustrasi, digunakan data kecelakaan fatal yang memiliki lebih dari 80% angka nol yang dimodelkan dengan distribusi Negative Binomial-Generalized Exponential (NB-GE).

Negative Binomial-Generalized Exponential (NB-GE) distribution is a distribution that capable for modeling overdispersion data with extreme excess zeros, which is more than 80% zeros in a data. The distribution is a mixture distribution that obtained by mixing the Negative Binomial (NB) distribution with the Generalized Exponential (GE) distribution. The formation of the Negative Binomial-Generalized Exponential (NB-GE) distribution and the characteristics of the Negative Binomial-Generalized Exponential (NB-GE) distribution such as the probability density function, kth moment, mean, variance, skewness and kurtosis are discussed in this paper. Estimation of the parameters from the Negative Binomial-Generalized Exponential (NB-GE) distribution using the maximum likelihood method. As an illustration, Negative Binomial-Generalized Exponential (NB-GE) distribution used to model the data of fatal crash that has more than 80% zeros."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ridho Okta Pawarestu
"Distribusi Transmuted Exponentiated Exponential merupakan generalisasi dari distribusi Exponentiated Exponential yang dibentuk dengan menggunakan metode quadratic rank transmutation maps (QRTM). Distribusi Transmuted Exponentiated Exponential merupakan salah satu distribusi kontinu yang mampu memodelkan data dengan hazard rate naik, turun, bathtub, dan non-monoton. Pada tugas akhir ini akan dibahas konstruksi dari distribusi Transmuted Exponentiated Exponential. Karakteristik-karakteristik distribusi yang meliputi fungsi kepadatan probabilitas, fungsi distribusi, dan hazard rate dari distribusi Transmuted Exponentiated Exponential juga dijelaskan lebih lanjut. Pada bagian akhir, diberikan suatu aplikasi dari distribusi Transmuted Exponentiated Exponential pada suatu data lifetime.

Transmuted Exponentiated Exponential distribution is a generalization of Exponentiated Exponential distribution which formed using a method called quadratic rank transmutation maps (QRTM). Transmuted Exponentiated Exponential distribution is a continued distribution which can model increasing, decreasing, bathtub, and non-monotone hazard rate. In this paper, it will be explained how to form Transmuted Exponentiated Exponential distribution. Characteristics of distribution such as, probability density function, distribution function, and hazard rate of Transmuted Exponentiated Exponential distribution will be explained further. Finally, a set of lifetime data will be analyzed using Transmuted Exponentiated Exponential distribution as an illustration.
"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S61730
UI - Skripsi Membership  Universitas Indonesia Library
cover
Huber, Peter J.
"Here is a brief, well-organized, and easy-to-follow introduction and overview of robust statistics. Huber focuses primarily on the important and clearly understood case of distribution robustness, where the shape of the true underlying distribution deviates slightly from the assumed model (usually the Gaussian law). An additional chapter on recent developments in robustness has been added and the reference list has been expanded and updated from the 1977 edition."
Philadelphia: Society for Industrial and Applied Mathematics, 1996
e20448590
eBooks  Universitas Indonesia Library
cover
Csorgo, Miklos
"Provides a comprehensive theory of the approximations of quantile processes in light of recent advances, as well as some of their statistical applications."
Philadelphia: Society for Industrial and Applied Mathematics, 1983
e20451084
eBooks  Universitas Indonesia Library
cover
Blank, Leland T.
New York, NY: McGraw-Hill, 1980
519.5 BLA s
Buku Teks  Universitas Indonesia Library
cover
O`Gorman, Thomas W.
"Adaptive statistical tests, developed over the last 30 years, are often more powerful than traditional tests of significance, but have not been widely used. To date, discussions of adaptive statistical methods have been scattered across the literature and generally do not include the computer programs necessary to make these adaptive methods a practical alternative to traditional statistical methods. Until recently, there has also not been a general approach to tests of significance and confidence intervals that could easily be applied in practice.
Modern adaptive methods are more general than earlier methods and sufficient software has been developed to make adaptive tests easy to use for many real-world problems. Applied Adaptive Statistical Methods: Tests of Significance and Confidence Intervals introduces many of the practical adaptive statistical methods developed over the last 10 years and provides a comprehensive approach to tests of significance and confidence intervals. It shows how to make confidence intervals shorter and how to make tests of significance more powerful by using the data itself to select the most appropriate procedure.
Adaptive tests can be used for testing the slope in a simple regression, testing several slopes in a multiple linear regression, and for the analysis of covariance. The increased power is achieved without compromising the validity of the test, by using adaptive methods of weighting observations and by using permutation techniques. An adaptive approach can also be taken to construct confidence intervals and to estimate the parameters in a linear model. Adaptive confidence intervals are often narrower than those obtained from traditional methods and maintain the same coverage probabilities."
Philadelphia : Society for Industrial and Applied Mathematics, 2004
e20443005
eBooks  Universitas Indonesia Library
cover
Durbin, J.
"Presents a coherent body of theory for the derivation of the sampling distributions of a wide range of test statistics. Emphasis is on the development of practical techniques. A unified treatment of the theory was attempted, e.g., the author sought to relate the derivations for tests on the circle and the two-sample problem to the basic theory for the one-sample problem on the line. The Markovian nature of the sample distribution function is stressed, as it accounts for the elegance of many of the results achieved, as well as the close relation with parts of the theory of stochastic processes."
Philadelphia: Society for Industrial and Applied Mathematics, 2004
e20451143
eBooks  Universitas Indonesia Library
cover
Johnson, Norman L.
New York: John Wiley & Sons, 1977
519.2 JOH u
Buku Teks  Universitas Indonesia Library
cover
Margaretha
"Distribusi Exponentiated Exponential (EE) adalah pengembangan dari distribusi Exponential dengan cara menambahkan sebuah parameter bentuk alpha. Distribusi ini digunakan untuk mengatasi masalah ketidakfleksibilitas dari distribusi Exponential. Untuk melakukan inferensi mengenai permasalahan yang dimodelkan dengan distribusi EE, perlu dilakukan penaksiran parameter. Pada skripsi ini akan dibahas mengenai penaksiran parameter distribusi dari distribusi Exponentiated Exponential pada data tersensor kiri menggunakan metode Bayesian. Prosedur penaksiran meliputi penentuan distribusi prior yaitu digunakan distribusi prior konjugat, pembentukan fungsi likelihood dari data tersensor kiri, dan pembentukan distribusi posterior. Penaksir Bayes kemudian diperoleh dengan cara meminimumkan risiko posterior berdasarkan fungsi loss Squared Error Loss Function (SELF) dan Precautionary Loss Function (PLF). Kemudian setelah diperoleh perumusan penaksir Bayes, simulasi data dilakukan untuk membandingkan hasil taksiran parameter menggunakan fungsi loss SELF dan PLF yang dilihat dari nilai Mean Square Error (MSE) yang dihasilkan. Fungsi loss dikatakan lebih efektif digunakan dalam merumuskan penaksir Bayes apabila penaksir Bayes yang diperoleh menghasilkan nilai MSE yang lebih kecil. Berdasarkan hasil simulasi, fungsi loss PLF lebih efektif digunakan untuk alpha≤1, sedangkan fungsi loss SELF lebih efektif digunakan untuk alpha>1.

Exponentiated Exponential (EE) distribution is the development of Exponential Distribution by adding alpha as a shape parameter. This distribution can solve unflexibility issue in Exponential distribution. In order to make inferences about any cases modeled with EE distribution, parameter estimation is required. This thesis will discuss about parameter estimation of Exponentiated Exponential distribution for left censored data using Bayesian method. Parameter estimation procedure are selection of prior distribution which is conjugate prior, likelihood construction for left censored data, and then forming posterior distribution. Bayes estimator can be obtained by minimize posterior risk based on Squared Error Loss Function (SELF) and Precautionary Loss Function (PLF). After Bayes estimator is obtained, simulation is done to compare the results of Bayes estimator using SELF and PLF which are seen from the result of Mean Square Error (MSE). Loss function is said to be more effective to obtain Bayes estimator if the resulting Bayes estimator yield smaller MSE. Based on simulation, PLF more effective for alpha ≤ 1, while SELF more effective for alpha>1."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>