Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 528 dokumen yang sesuai dengan query
cover
Gohberg, Israel
New York: Academic Pres, 1982
512.9 GOH m
Buku Teks SO  Universitas Indonesia Library
cover
Gohberg, Israel
"This book provides a comprehensive treatment of the theory of polynomials in a complex variable with matrix coefficients. Basic matrix theory can be viewed as the study of the special case of polynomials of first degree; the theory developed in Matrix Polynomials is a natural extension of this case to polynomials of higher degree. It has applications in many areas, such as differential equations, systems theory, the Wieneropf technique, mechanics and vibrations, and numerical analysis. Although there have been significant advances in some quarters, this work remains the only systematic development of the theory of matrix polynomials."
Philadelphia : Society for Industrial and Applied Mathematics, 2009
e20443142
eBooks  Universitas Indonesia Library
cover
cover
Franklin, Joel N.
Englewood Cliff, New Jersey: Prentice-Hall, 1968
512.943 4 FRA m
Buku Teks SO  Universitas Indonesia Library
cover
Horn, Roger A
New York: Cambridge University Press, 2013
512.943 4 HOR m
Buku Teks SO  Universitas Indonesia Library
cover
J. Supranto
Jakarta: Lembaga Penerbit Fakultas Ekonomi Universitas Indonesia, 1971
512.943 4 SUP p
Buku Teks SO  Universitas Indonesia Library
cover
Horn, Roger A
""The thoroughly revised and updated second edition of this acclaimed text has several new and expanded sections and more than 1,100 exercises"--"
New York: Cambridge University Press, 2018
512.943 4 HOR m
Buku Teks SO  Universitas Indonesia Library
cover
Searle, S.R. (Shayle R.), 1928-
Hoboken: Wiley, 2017
512.943 4 SEA m
Buku Teks SO  Universitas Indonesia Library
cover
Bronson, Richard
New York: McGraw-Hill, 2011
512.943 4 BRO s
Buku Teks SO  Universitas Indonesia Library
cover
Muhammad Irfan Arsyad Prayitno
"Suatu graf berarah dapat direpresentasikan dengan beberapa matriks representasi, seperti matriks adjacency, anti-adjacency, in-degree laplacian, dan out-degree aplacian. Dalam paper ini dibahas polinomial karakteristik dan nilai-nilai eigen dari matriks adjacency, anti-adjacency in-degree laplacian, dan out-degree Laplacian graf matahari berarah siklik. Bentuk umum polinomial karakteristik dari matriks adjacency graf matahari berarah siklik dapat diperoleh dengan menghitung jumlah nilai determinan matriks adjacency subgraf terinduksi siklik dari graf tersebut. Kemudian polinomial karakteristik dari matriks anti-adjacency dapat dicari dengan menghitung jumlah nilai determinan matriks anti-adjacency subgraf terinduksi siklik dan subgraf terinduksi asiklik dari graf matahari berarah siklik. Selanjutnya bentuk umum polinomial karakteristik dari matriks in-degree Laplacian dan out-degree Laplacian dicari dengan menggunakan ekspansi kofaktor matriks-matriks tersebut. Nilai-nilai eigen dari matriks adjacency, matriks anti-adjacency, matriks in-degree Laplacian dan matriks out-degree Laplacian dapat berupa bilangan riil dan bilangan kompleks yang dapat dicari dengan pemfaktoran polinomial karakteristik dengan menggunakan metode Horner ataupun dengan menggunakan bentuk eksponensial dari bilangan kompleks.

A directed graph can be represented by several matrix representations, such as adjacency matrix, anti-adjacency matrix, in-degree Laplacian matrix, and out-degree Laplacian matrix. In this paper we discuss the general form of characteristic polynomials and eigenvalues of adjacency matrix, anti-adjacency matrix,  in-degree Laplacian matrix, and out-degree Laplacian of directed cyclic sun graph. The general form of the characteristic polynomials of adjacency matrix can be found out by counting the sum of the determinant of adjacency matrix of directed cyclic induced subgraphs from directed cyclic sun graph. Furthermore, the general form of the characteristic polynomials of anti-adjacency matrix can be found out by counting the sum of the determinant of anti-adjacency matrix of the directed cyclic induced subgraphs and the directed acyclic induced subgraphs from directed cyclic sun graph. Moreover, the general form of the characteristic polynomials of in-degree Laplacian and out-degree Laplacian matrix can be found by using the cofactor expansion of those matrices. The eigenvalues of the adjacency, anti-adjacency, in-degree Laplacian, and out-degree Laplacian can be real or complex numbers, which can be figured out by factoring the characteristic polynomials using horner method or the exponential form of the complex numbers."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>