Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 139921 dokumen yang sesuai dengan query
cover
Niki Reginal Subakti
"Hasil penelitian menunjukan distribusi frekuensi kerugian operasional claim spare part membentuk distribusi Geometric sedangkan distribusi severitas kerugian operasional membentuk distribusi Lognormal. Hasil tersebut didapat dari hasil pengujian distribusi dengan metode Kolmogorov Smirnov yang memiliki D max terkecil. Dengan menggunakan metode Loss Distribution Approach Aggregation Model, metode analisis simulasi Monte Carlo, besarnya Operational Value at Risk bulanan dari risiko operasional akibat claim spare part dengan tingkat kepercayaan 95% yang diperoleh adalah sebesar Rp 690.507.800,-. Berdasarkan hasil back testing dengan kupiec test menyatakan bahwa pengukuran risiko operasional akibat claim spare part pada PT.X dengan menggunakan Aggregation Loss Distribution Model simulasi Monte Carlo adalah valid. Jadi, nilai Operational VaR bisa digunakan sebagai dasar untuk membuat pencadangan kerugian PT.X.

The results show that the frequency distribution of operational losses spare part claim form Geometric distribution while operating loss severity distributions form a Lognormal distribution. Results are obtained from the test results with the distribution of Kolmogorov Smirnov method which has the smallest D max. By using the method of Loss Distribution Approach Aggregation Model, method of Monte Carlo simulation analysis, the magnitude of Operational Value at Risk monthly operational risks due to spare part claim with 95% confidence level obtained is Rp 690,507,800, -. Based on the results of back testing with the test kupiec stated that due to operational risk measurement claim spare part of PT X by using LDA aggregation Model with Monte Carlo simulation is valid. Thus, VaR Operational value can be used as a basis for making backups loss PT.X."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2010
T28231
UI - Tesis Open  Universitas Indonesia Library
cover
Eddy Karmin
Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2008
T24341
UI - Tesis Open  Universitas Indonesia Library
cover
Rokhsyahdun
"Karya akhir ini membahas perhitungan risiko operasional dengan menggunakan metode LDA Aggregation. Selain itu juga dibahas mengcnai penerapan manajemen risiko di PT. ABC. Sebagai perusahaan manufaktur, PT ABC terekspose risiko operasional pengembalian produk rusak oleh pelanggan (customer return), yang nilainya sangat mempengaruhi variabilitas net profit. Pengukuran potensi kerugian risiko operasional berupa operational value al risk (OpVaR) menggunakan model LDA Aggregation, menghasilkan nilai sebesar Rp800.387.847,- (pada tingkat kcyakinan 95%) dan Rp1.992.724.386,- (pada tingkat keyakinan 99%). Hasil Back testing menggunakan Loglikelihood Razio menunjukkan bahwa model LDA Aggregation valid digunakan untuk menghitung potensi kemgian.
Hasil penelitian menyarankan kepada PT ABC untuk menggunakan model LDA Aggregarion untuk penghitungan potensi kerugian risiko operasional dan menerapkan manajemen risiko untuk rnengelola risiko yang dihadapi perusahaan. Khusus untuk mitigasi risiko pengembalian produk oleh pelanggan, perusahaan perlu melakukan reduce risk dan transfer risk karena risiko pengembalian produk oleh pelanggan masuk dalam kategori risiko hiyt, baik dari segi likeiihood maupun dari segi impact.

The focus of this study is the calculation of operational risk by using LDA Aggregation method. It also discussed about the implementation of risk management at PT ABC. As a manufacturing company, PT ABC expose to operational risks such as defective product returns by customers (customer retum), whose value is affecting net profit variability significantly. Measurement of potential operational risk losses in the form of operational value at risk (OpVaR) using LDA Aggregation model, generate value Rp800.387.847,- (at 95% confidence level) and Rpl.992.724.386,- (at 99% confidence level). Back testing results using Loglikelihood ratio indicates that the model is valid to calculate potential losses.
The results suggest that PT ABC to use the LDA Aggregation model for calculating the potential of operational risk losses and apply risk management to manage the risks facing the company. Especially for mitigation of the customer return risk, companies need to reduce risk and transfer risk because the risk of product returns by customers tits into the category of high risk, both in terms of likelihood and impact.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2009
T32052
UI - Tesis Open  Universitas Indonesia Library
cover
"Using the application of risk mesuring methods on banking industry, Operational Value at Risk (VaR), is measuring risk that could arise and thuse leading to a certain nominal that is used for reserve, including for managing a company. The method that is used for measuring operational risk is the LDA Aggregation Method. Historical data of the operational risk on the internal process from receiving shrimp process at PT.X is based on the internal audit result of PT. X. Furthermore, with the Agregation method it will form the Aggregation Loss Distribution with Aggregate best Frequency Distribution, Poisson Distribution and Best Severity Distribution, Exponential Distribution. Computationn is conducted with the spreadsheet Excel with 10.000 times of Monte Carlo simulation to calculate the maximum potential loss of Operational VaR based on the quantifyable method with a degree of freedom of 95%. Based on the back testing result of the Kupiec Test, the model could be implemented for measuring the operational internal process risk from receiving shrimp process at PT. X. The the next step for obtaining an accurate model. PT. X should then regularly up-date the model with the newest data and validate the test through back testing process."
TEMEN 5:1 (2010)
Artikel Jurnal  Universitas Indonesia Library
cover
Wawan Setiawan
Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2008
T25389
UI - Tesis Open  Universitas Indonesia Library
cover
Maryam Fitriyah
"New Basel II Capital Accord menyadari bahwa dengan memperkenalkan persyaratan permodalan untuk risiko operasional akan menimbulkan dampak yang cukup signifikan terhadap jumlah regulatory capital yang harus disisihkan oleh bank.
Penelitian ini menganalisa perbedaan metode dengan mengacu pada metode yang dipersiapkan oleh Basel Committe dalam memperkirakan capital charge untuk risiko operasional. Analisis diperoleh dengan membandingkan Advanced Measurement Approach (AMA) melalui Loss Distribution Approach (LDA) terhadap non-advanced atau Basic Indicator Approach (BIA). Perhitungan capital charge risiko operasional melalui Basic Indicator Approach merupakan persentase tertentu dari gross income. Sedangkan LDA model menekankan pada analisis kerugian operasional yang membutuhkan data historis (Loss Event Database) mengenai kejadian risiko operasional berdasarkan distribusi frekuensi dan severitas dengan menerapkan konsep Value at Risk (VaR).
Berdasarkan data yang tersedia pada Bank X, hasil penelitian menunjukkan bahwa penerapan advanced approach dengan LDA model menghasilkan capital charge yang lebih rendah dibandingkan dengan BIA model.

New Basel II Capital Accord realized that the introduction of capital requirements for operational risk will cause a significant impact on the amount of regulatory capital that must be set aside by the bank.
This research analyzes the differences of methods with in regards to the methods prepared by the Basel Committee in estimating the capital charge for operational risk. The analysis was done by comparing the Advanced Measurement Approach (AMA) of the Loss Distribution Approach (LDA) to the non-advanced or Basic Indicator Approach (BIA). Calculation of operational risk capital charge with the Basic Indicator Approach is specified by a percentage of the gross income. Meanwhile, the LDA model requires analysis of operating loss using historical data (Loss Event Database) on the operational risk incidents based on the frequency and severity distribution and applying the concept of Value at Risk (VaR).
Based on the data made available by the Bank X, the results showed that the advanced approach applied using the LDA model produces a lower capital charge compared to the BIA model.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2012
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Henny
Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2009
T27288
UI - Tesis Open  Universitas Indonesia Library
cover
"Using the application of risk measuring, Operational Value at Risk (VaR) , is measuring risk that could arise and thus leading to a certain nominal that is used for reserve, including for managing a company. The method that is used for measuring operational risk is the LDA Aggregation Method. Historical data of the operational risk on the internal process from receiving shrimp process at PT. X is based on the internal audit result of PT X. Furthermore, with the Aggregation method it will form the Aggregation Loss Distribution with Aggregate Best Frequency Distribution, Poisson, distribution and Best Severity Distribution , Exponential Distribution .Computation is conducted with the spreadsheet Excel with 10.000 times of Monte Carlo simulation to calculate the maximum potential loss of Operational VaR based on the back testing result of the Kupiec Test, the model could be implemented for measuring the operational internal process risk from receiving shrimp process at PT. X.. The the next step for obtaining an accurate model . PT. X. should then regularly up - date the model with the newest data and validate the test through back testing process."
Artikel Jurnal  Universitas Indonesia Library
cover
Panggabean, Valentin
"Gempa bumi dapat menimbulkan dampak yang cukup besar, baik dalam hal besarnya nilai kerugian maupun luasnya wilayah terdampak. Implikasi keuangan dari gempa bumi besar dapat memiliki efek jangka panjang. Oleh karena itu, perusahaan perlu memahami karakteristik dari kejadian gempa. Penelitian ini mengukur Operational Value at Risk (VaR) untuk klaim asuransi gempa bumi menggunakan data sesi statistik (MAIPARK) tahun 2014-2021. Perhitungan risiko operasional dengan model Loss Distribution Approach-Aggregation (Monte Carlo Simulation) bertujuan untuk memperkirakan perkiraan cadangan modal berdasarkan distribusi frekuensi dan distribusi keparahan data historis. Hasil penelitian menunjukkan bahwa distribusi frekuensi kerugian klaim asuransi gempa bumi mengikuti pola distribusi geometrik, sedangkan distribusi keparahan menunjukkan pola distribusi eksponensial. Dengan tingkat kepercayaan 95%, nilai VaR risiko operasional adalah Rp 2.792.721.528.565,80, dan uji validitas atau backtesting menggunakan uji Kupiec dengan satu kesalahan, dan model dapat diterima.

Earthquakes may cause a considerable impact, both in loss and the area. The financial implications of a major earthquake can have a long-lasting effect. Therefore, companies need to understand the essential characteristics of earthquake events. This research measures the Operational Value at Risk (VaR) for claim catastrophe Insurance using statistical session (MAIPARK) data for 2014-2021. Calculation of operational risk with loss distribution approach aggregation model (Monte Carlo Simulation) aims to estimate capital reserve estimates based on the frequency distribution and severity distribution of historical data. The results showed that the frequency distribution of earthquake insurance claim losses followed a geometric distribution pattern, while the severity distribution showed an exponential distribution pattern. With a 95% confidence level, the operational risk VaR value is IDR 2,792,721,528,565.80, and the validity test or backtesting uses the Kupiec test with one error, and the model is acceptable."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Pesiwarissa, Darcel Anadona Indria
"Krisis perbankan tempo lalu ternyata menjadi pelajaran yang berharga bagi kalangan perbankan, termasuk pihak pemegang otoritas perbankan, yakni Bank Indonesia (BI). Hikmah dari kejadian tersebut adaiah semua pihak menjadi mawas diri untuk bekerja lebih baik dan profesional pada masa mendatang. Sebelum krisis, unsur pengawasan tidak dilakukan secara optimal dan para pelaku perbankanpun tidak memperhitungkan berbagai macam faktor risiko bisnis.
Namun setelah itu, BI sebagai koordinator perbankan nasionalpun mulai mengkaji dart menata kembali industri yang telah dihantam badai yang paling dahsyat, yang selama ini belum pernah terjadi dalam sejarah perbankan nasional. Pada awal Januari 2004 BI menerbitkan Arsitektur Perbankan Indonesia (API) yang merupakan sebuah program menyeluruh yang dapat dijadikan pedoman bagi seluruh kalangan perbankan hingga 2010.
Ada delapan pilar API yang mesti dilaksanakan oleh para pelaku bisnis perbankan. Salah satu pilar antara lain menyebutkan tentang perlunya manalemen risiko (risk nianagenrent) bagi kalangan perbankan. Pemberlakuan ketentuan BI No. 5/8/PBI/2003 tentang Penerapan Manajemen Risiko bagi Bank Umum yang mewajibkan bank memasukkan faktor risiko operasional ke dalam perhitungan kewajiban penyediaan modal minimum diharapkan dapat memperkuat sistem pengawasan perbankan secara menyeluruh.
Dalam rangka menerapkan manajcmen risiko operasional secara efektif, maka bank "X" harus mampu mengidentifikasi risiko operasional dan mengukurnya. Hasil identifikasi risiko operasional digambarkan pada LEDB berupa kejadian kerugian (loss event), penyebab kerugian dan dampak dari kejadian kerugian dalam jumlah uang.
Untuk keperluan pengukuran risiko operasional mula-mula dilakukan pengumpulan data kerugian dari LEDB. Selanjutnya data disaring untuk keperluan penelitian dan dianalisis secara statistic. Data kerugian dan data observasi jumlah kejadian kerugian digunakan sebagai dasar pembuatan severity of loss probability model dan frequency of loss probability model.
Kedua model tersebut diuji masing-masing dengan menggunakan uji Kolmogorov-Smirnov dan uji Chi-Square. Berdasarkan uji model tersebut dipilih Exponential distribution dan Poisson distribution.
Selanjutnya, guna pengukuran risiko operasional dilakukan simulasi Monte Carlo. Untuk itu dilakukan penetapan asumsi-asumsi bagi setiap jumlah kerugian dan jumlah kejadian kerugian. Penetapan asumsi tersebut dilakukan terhadap setiap angka kerugian dan jumlah kejadian kerugian. Angka jumlah kerugian diasumsikan mengikuti Exponential distribution, sedangkan angka jumlah kejadian diasumsikan mengikuti Poisson distribution. Setelah itu ditetapkan forecast atau output yang diharapkan.
Hasil simulasi Monte Carlo adalah aggregate loss distribution. Berdasarkan distribusi kerugian hasil simulasi tersebut dilakukan perhitungan OpVaR, yang besarnya adalab Rp. 17.613.014.530,- (95th percentile) dari Rp. 31.151.154.671,- (99th percentile).

Banking crisis in Indonesia has indeed become a worthy lesson for bankers, including Bank Indonesia as monetary authority. The crisis has encouraged related parties to be more prudent and professional in the future. Supervision has not been done properly before banking crisis occurred and business risks have not been wholly considered.
Then, Bank Indonesia began to review and rebuild the banking industry in Indonesia. In the beginning of 2004, Bank Indonesia issued Indonesian Banking Architecture (API), a comprehensive program aimed to be guidance for bankers until 2010.
API introduces 8 pillars which must be accomplished by bankers. One of them states a need for risk management in banking industry. BE regulation No. 5/8/PBI/2003 regarding Risk Management Accomplishment for Banks, requesting banks to consider operational risk in the calculation of minimum capital requirement is expected to strengthen the control system in banking as a whole.
For the purpose of effective operational risk management, bank "X" must be able to identify operational risk and measure it: The identification of this risk is reported in Loss Event Data Base (LEDB).
To measure the risk, data of losses are gathered from LEDB, The data, consisting of loss amounts and frequency of losses are then used to establish severity of loss probability model and frequency of loss probability model. Both models are tested using Kolmogorov-Smimov Test and Chi-Square Test. Based on those tests, Exponential distribution and Poisson distribution are consecutively chosen as Severity of loss probability model and Frequency of loss probability model.
For the purpose of risk measurement, Monte Carlo simulation is done. Before doing this simulation, certain assumptions are established for each loss amount and each loss frequency.
The result of this simulation is aggregate loss distribution. Based on the distribution, Operational Value at Risk (OpVaR) is Rp. 17,613,014,530.00 (95th percentile) and Rp. 31,151,154,671.00 (99th percentile).
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2006
T18322
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>