Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 202243 dokumen yang sesuai dengan query
cover
Diyas Wulandari
"Sistem kontrol bangunan terhadap beban dinamik dibedakan menjadi dua yaitu sistem kontrol tanpa alat dan sistem kontrol menggunakan alat kontrol. Pada sistem kontrol tanpa alat, struktur hanya mengandalkan kekakuan dan kekuatan struktur. Untuk beban dinamik yang besar maka diperlukan kekakuan dan kekuatan yang lebih besar. Hal ini kurang efisien dari segi dimensi struktur dan biaya. Saat ini sudah dikembangkan sistem kontrol struktur terhadap beban dinamik dengan menggunakan alat kontrol pasif maupun aktif. Sistem kontrol pasif adalah sistem kontrol dengan menambahkan alat kontrol pada struktur yang dapat merubah karakteristik dinamik struktur sehingga dapat menggeser respon struktur menjauhi daerah resonansi. Sistem kontrol aktif adalah sistem kontrol struktur seperti sistem kontrol pasif namun pada alat kontrol diberikan gaya aktif yang arahnya beriawanan terhadap gaya dinamik sehingga dapat mereduksi respon struktur yang lebih besar.
Pada skripsi-skripsi sebelumnya telah dilakukan penelitian sistem kontrol aktif menggunakan analisa struktur 2 dimensi (2D). Analisa struktur 2D hanya dapat digunakan untuk bangunan yang simetris, sedangkan sebagian besar bangunan gedung tidak simetris sehingga harus dianalisa secara 3 dimensi (3D). Pada analisa struktur 2D hanya ada 1 derajat kebebasan translasi pada setiap lantai sedangkan pada analisa 3D minimal ada 3 derajat kebebasan pada setiap lantainya yaitu 2 derajat kebebasan translasi (arah X dan Y) dan 1 derajat kebebasan rotasi.
Pada skripsi ini akan dilakukan penelitian respon dinamik struktur yang dianalisa secara 3D dengan alat kontrol Mass Damper yaitu alat kontrol berupa massa besar yang diletakkan dilantai teratas struktur. Struktur yang akan dianalisa meliputi struktur tanpa kontrol, struktur dengan sistem kontrol pasif (Passwe Mass Damper) dan struktur dengan sistem kontrol aktif (Active Mass Damper). Mekanisme sistem kontrol aktif yang digunakan adalah Linear Velocity Feedback dan Non Linear Velocity Feedback. Velocity Feedback adalah sistem kontrol dengan mengambil input berupa kecepatan struktur dan mengeluarkan output gaya kontrol yang mempakan fungsi kecepatan struktur. Pada mekanisme linear maka gaya kontrol adalah fungsi linear kecepatan struktur sedangkan pada non linear gaya kontrol adalah fungsi non linear kecepatan struktur. Model struktur akan disimulasikan dengan memvariasikan parameter-parameter: massa struktur, kekakuan struktur, eksentn'sitas, dan sudut datang gempa. Selanjutnya akan dilakukan analisa pengaruh variasi parameter-parameter tersebut terhadap respon translasi dan rotasi masing-masing struktur yang disimulasikan. Penyelesaian persamaan dinamik, struktur dan algoritma kontrol pada simulasi ini menggunakan program MATLAB_ versi 5.3 ."
Depok: Fakultas Teknik Universitas Indonesia, 2001
S34969
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fat Churrohman
"Penelitian ini membahas mengenai perilaku struktur dinding geser beton bertulang dan dinding geser pelat baja dengan analisis statik non-linier pushover akibat beban gempa. Pada penelitian ini ditinjau bangunan 12 lantai pada lokasi gempa di Jakarta, tanah lunak dan dianalisis berdasarkan peraturan SNI 03-1726-201x. Analisis pada struktur dinding geser beton menggunakan SAP2000 dan pada struktur baja menggunakan ETABS v9. Penentuan tingkat kinerja menggunakan metode spektrum kapasitas yang mengacu pada ATC 40. Hasil analisis menunjukkan bahwa model struktur dinding geser pelat baja memiliki kinerja struktur yang lebih baik dibandingkan dengan struktur dinding geser beton bertulang.

This thesis discussed about behavior of reinforced concrete shear wall and steel plate shear wall using static non-linear pushover analysis due to earthquake load. In this thesis, 12-story building with earthquake location in Jakarta with soft soil is considered and analyzed based on Indonesia Building Code SNI 03-1726-201x. Reinforced concrete shear wall is analyzed by SAP 2000 and steel plate shear wall is analyzed by ETABS v.9. Determination of performance level use spectrum capacity method based on ATC 40. Analysis results show that steel plate shear wall has a better performance level than reinforced concrete shear wall."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43570
UI - Skripsi Open  Universitas Indonesia Library
cover
Anak Agung Sagung Paramitha Maharani Putra
"Pada sistem transnmisi long-haul fiber optik yang menggunakan input daya yang tinggi dan memiliki jarak transmisi yang jauh, gangguan-gangguan dapat terjadi selama proses propagasi. Gangguan-gangguan ini dapat dikategorikan menjadi efek linear dan non-linear yang dipengaruhi oleh kebergantungan intensitas terhadap medium indeks n. Efek-efek ini dibagi terbagi menjadi beberapa orde dan dianalisa secara terpisah karena setiap orde memiliki efek yang berbeda satu sama lain. Pada penelitian ini, dispersi yang menjadi bagian dari efek linear dan beberapa efek non linear akan dianalisa. Secara lebih spesifik, fokus utama dari paper ini adalah keberadaan pulse broadening, pulse oscillation, dan evolusi spektral yang terjadi di dalam pulsa signal. Pendekatan yang baru mengenai pemodelan metode orde tinggi dari NLSE diajukan untuk menjadi topik pembahasan skripsi ini untuk mendeteksi dan menganakusa efek-efek tersebut. Skema baru ini menggunakan high orders sequence, SSFM, dan Symmetrized SSFM yang akan digunakan untuk menganalisa setiap orde di dalam NLSE. Skema baru ini didasarkan kepada deret orde tinggi dari NLSE yang akan digunakan untuk mengklasifikasikan efek-efek dari parameter-parameter yang ada. Selanjutnya, beberapa metode chirping dari setuap input pulsa juga akan didiskusikan untuk mengkomparasi pulsa yang sudah ataupun belum diberlakukan efek chirping. Sehingga ditemukan bahwa metode chirping juga mempengaruhi hasil dispersi karena kebergantungan dari parameter-parameter-parameter orde tinggi NLSE terhadap metode chirping. Selain itu ditemukan pula bahwa hasil terbaik untuk simulasi berada pada nilai rata-rata PBR yaitu 2,4833 untuk nilai variabel non linear yang tetap, 1,8944 untuk nilai tetap, dan nilai intensitas fiber sebesar 2,433 a.u pada 0,1 untuk TOD. Analisa lebih lanjut terhadap hasil simulasi MATLAB juga dijabarkan di dalam tugas akhir ini.

In a long-haul optical fiber transmission system which uses a high power input and a long distance transmission, disturbances can occur during the propagation process. These disturbances can be categorized into linear and non-linear effects which are affected by the intensity dependence of fiber optic refractive index n . These effects are divided into several orders and analyzed separately since each of the orders has different effects. In this research, dispersion which is part of the linear effect and some of the non linear effects are analyzed. More specifically, the main focus of this paper will be on the phenomena of pulse broadening, oscillation and spectral evolution that occur within a signal pulse. A novel approach which is based on the modeling of high order method of NLSE, SSFM, and Symmetrized SSFM within the modelled equation were proposed in this final project in order to detect and analyze those effects. This new scheme is based on the high order sequence of NLSE which will be used to classify the effects of the parameters. Furthermore, various chirping methods for each input pulse were also discussed to compare the chirped and unchirped pulses. Consequently, it was found that the chirping method affected the dispersion result due to the dependencies of high order parameter with respect to the chirping constants and the best result of PBR found in the average of 2,4833 for constant non linearity variabel, 1,8944 for constant variabel, and 2,433 at 0,1 for best intesity fiber in TOD. Further analysis of the MATLAB results is also presented in this paper based on each output."
Depok: Fakultas Teknik Universitas Indonesia, 2015
S60423
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwi Rian Setianto
"Beban gempa merupakan salah satu beban yang harus diperhatikan dalam perancangan jembatan. Jembatan harus dirancang sedemikian hingga dapat memiliki kinerja yang optimal. Hal ini diukur dari parameter kekuatan serta daktilitas jembatan itu. Oleh karena itu, analisa yang mendalam hingga perilaku inelastis struktur jembatan perlu dilakukan. Dengan analisa non-linear pushover, perilaku inelastis jembatan akibat beban gempa rencana dapat diprediksi. Kemudian hasil analisa tersebut dapat menjadi acuan apakah jembatan tersebut sudah optimal atau memerlukan penanganan lebih lanjut seperti perkuatan struktur. Pada studi ini jembatan yang menjadi objek penelitian adalah jembatan cable-stayed di Maluku. Berdasarkan studi yang dilakukan, jembatan ini memiliki kekuatan yang memadai namun memiliki daktilitas yang cukup rendah. Hal ini terlihat dari besarnya beban ultimit yang dapat diterima serta besarnya displacement yang terjadi tepat sebelum jembatan mengalami kegagalan.

Earthquake load is one of the load that must be considered in the design of the bridge. The bridge should be designed so that can have an optimum performance. It is measured on the parameters of the strength and ductility of the bridge. Therefore, in-depth analysis of the inelastic behaviour of the structure of the bridge needs to be done. Inelastic behaviour of the bridge due to earthquake load can be predicted with non-linear pushover analysis. Then, the results of the analysis can be a reference to whether the bridge is optimum or require further treatment such as structure retrofitting. The bridge that becomes the object of this study is a cable-stayed bridge in Maluku. Based on study conducted, this bridge has adequate strength but has low ductility level. It is evident from the ultimate load that can be received and the amount of displacement that occurs just before the bridge failed.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T43536
UI - Tesis Membership  Universitas Indonesia Library
cover
Arrianto Suwandi
"ABSTRAK
Gempa bumi merupakan gejala fisik yang disebabkan oleh fenomena alam yang tidak dapat dihindari. Karena itu, usaha untuk meminimisasi bencana kerusakan yang ditimbulkannya terus berkembang mulai dari perencanaan bangunan tahan gempa yang mengandalkan kekakuan dan kekuatan struktur, sampai kemudian kepada sistim kontrol getaran yang diterapkan pada struktur.
Sistim kontrol getaran ini dapat berupa sistem kontrol pasif, sistem kontrol aktif ataupun sistem kontrol hibrid. Konsep dari sistem kontrol pasif adalah dengan merubah karakteristik dari struktur sehingga responnya menjadi lebih baik. Berbeda dengan kontrol pasif, sistem kontrol aktif mereduksi respons struktur dengan menerapkan gaya kontrol luar atau dengan membentuk gaya dalam yang bekerja dalam struktur. Gabungan dari kedua sistem ini merupakan sistem kontrol hibrid.
Salah satu dari sistem kontrol hibrid adalah Active Mass Damper. Sistem kontrol ini memberikan sebuah massa yang cukup besar yang diletakkan pada bagian atas struktur dan pada massa ini diterapkan gaya kontrol yang bekerja. Dalam sistem loop tertutup, gaya kontrol ini dihubungkan dengan respons balik struktur sebagai input untuk algoritma sistem kontrol. Namun untuk menjamin kestabilan dari sistem kontrol terhadap gaya gempa yang kuat, nilai saturasi diperkenalkan dalam metode kontrol velocity feedback. Batas saturasi ini harus dipilih sesuai dengan besar reduksi respons yang diperlukan untuk tercapai sesuai dengan kemampuan dari alat.
Tugas akhir ini menyelidiki performance dari algoritma dengan nonlinear velocity feedback yang diterapkan pada portal geser 8 tingkat dengan Active Mass Damper dibawah percepatan gempa dengan karakteristik gempa El-Centro. Studi ini memfokuskan ke dalam analisa parameter yang menunjukkan kontribusi dari setiap parameter kepada kontrol struktur. Parameter yang akan dievaluasi adalah massa, dan kekakuan dari Active Mass Damper, gaya kontrol saturasi, rasio redaman, dan lokasi sensor kedua (lokasi sensor pertama ada di bagian atas dari Active Mass Damper).
Untuk studi ini, simulasi numerik dilakukan dengan menggunakan fasilitas Simulink dari program MATLAB dengan menggunakan Metode integrasi Runge - Kutta orde 4.
Hasil simulasi menunjukkan bahwa sistem kontrol active mass damper dengan non-linear velocity feedback memberikan efektifitas pengontrolan yang cukup baik bila struktur terkena beban gempa dengan karakteristik seperti gempa El Centre, hal ini ditandai dengan reduksi displacement max di lantai ke-8 yang dihasilkan sistem kontrol aktif terhadap struktur tanpa kontrol sebesar 46% dan nilai DRF antara 5% - 47%.

"
2000
S34944
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ika Triana Wati
"Dalam tulisan ini akan dibahas metode pengontrolan efek gempa bumi pada struktur 3 dimensi (3D) dengan modelisasi struktur portal geser 3D. Pemodelan tersebut didapat apabila pada model portal lentur digunakan asumsi-asumsi: kekakuan pada bidangnya (in-plane stiffness) dari sistem balok-pelat sangat besar sehingga deformasinya dapat diabaikan dan massa bangunan terkonsentrasi pada masing-masing lantai. Dengan demikian DOF portal geser 3D dapat direduksi menjadi 3 DOF per lantai, yaitu translasi pada arah x (ux), translasi pada arah y (uy) dan satu DOF rotasi(u?). Alat kontrol yang dipakai adalah Active Base Isolator (base isolator + active force) dengan algoritma linear velocity feedback dan non-linear velocity feedback.
Non linier yang dimaksudkan dalam metode ini adalah besar gaya kontrol yang digunakan bukan merupakan fungsi linier terhadap respon struktur (dalam hal ini kecepatan struktur). Non linieritas dalam metode ini dijamin oleh penggunaan saturasi (batas maksimal gaya kontrol yang boleh digunakan / terjadi pada aktuator). Keuntungan dari penggunaan metode ini adalah kapasitas maksimum dari aktuator yang digunakan akan sering tercapai (hal ini tidak terjadi pada algoritma linier), sehingga aktuator dapat digunakan secara optimal. Kemudian sistem kontrol ABI ini disimulasikan terhadap portal geser 3D yang dikenai percepatan gempa El Centro (1940) pada komponen utara-selatan (NS)."
Depok: Fakultas Teknik Universitas Indonesia, 2001
S34787
UI - Skripsi Membership  Universitas Indonesia Library
cover
Salsabila Luvaridian
"Penelitian ini bertujuan untuk mendapatkan karakteristik berkas foton 6 MV pada lapangan non standar pesawat Linier Accelerator Varian iX dan TomoTherapy HiArt melalui parameter-parameter pengukuran seperti PDD, , profil berkas, dan faktor keluaran. Pengukuran dilakukan dengan menggunakan 3 dosimeter, yaitu film gafchromic EBT 3, bilik ionisasi CC01 dan bilik ionisasi CC13. Evaluasi pengukuran PDD dilakukan dengan menentukan nilai dan menghitung nilai Profil dosis dianalisa berdasarkan nilai FWHM, penumbra, flatness, dan symmetry. Nilai faktor keluaran lapangan msr dibandingkan dengan hasil faktor keluaran pada lapangan referensi 10 10 cm2. Hasil pengukuran FWHM berkas profil menunjukkan bahwa nilai FWHM semakin besar seiring dengan semakin lebarnya ukuran lapangan dan semakin bertambah kedalamannya. Hasil pengukuran semakin bertambah seiring semakin besarnya luas lapangan berkas yang digunakan. Nilai faktor keluaran semakin besar seiring dengan pertambahan luas lapangan berkas. Perhitungan nilai menunjukkan peningkatan dengan bertambahnya luas lapangan. Penggunaan detektor bilik ionisasi CC01 dinilai paling baik dalam pengukuran pada lapangan non standar 5 10 cm2, 10 5 cm2, dan 6.6 6.6 cm2 karena efek volume yang terjadi pada bilik ionisasi CC01 tidak terlalu mempengaruhi hasil pengukuran.

The purpose of this study was to determine PDD, dose profile, and output factor measurement on non standard field generated by 6 MV linear accelerator and TomoTherapy HiArt. The detectors used in this research are Gafchromic Film EBT 3, ionization chamber CC01, and ionization chamber CC13. This research was aimed to determine the characteristic of 6 MV photon beam in Linac Varian iX nonstandard field and TomoTherapy HiArt machine spesific reference msr field. PDD measurements evaluation has been done by determining the value of and calculate the value. Dose profile was analyzed based on the value of FWHM, penumbra, flatness, and symmetry. The output factor value in the msr field are compared to the output factor value in the reference field 10 10 cm2. The FWHM measurement of the profile shows that the FWHM increases with the width and depth of field size. The result of measurement shows that the increases with the width of field size. The ouput factor measurement shows that it values increases with the field size, and also increases with depth when measured using TomoTherapy machine using Gafchromic EBT 3 Film. The calculation of shows that the increases with field size. For the 5 10 cm2, 10 5 cm2, and 6.6 6.6 cm2 msr field, the use of CC01 ionization chamber is very recommended because it does not too affected by the volume averaging so that, the measurement values are not underestimated.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rachmat Purwono
Surabaya: ITS Press, 2013
693.54 RAC d
Buku Teks SO  Universitas Indonesia Library
cover
Prio Adhi Setiawan
"ABSTRAK
Gempa bumi merupakan gejala fisik yang disebabkan oleh fenomena alam yang tidak dapat dihindari. Terjadinya gempa bumi membawa banyak korban jiwa dan harta benda. Karena sifat gempa bumi yang memgikan itu khususnya bagi bangunan, harus diatasi dengan perencanaan struktur bangunan yang tahan terhadap efek destruktif gempa tersebut.
Pada awalnya perencanaan bangunan tahan gempa mengandalkan kekakuan dan kekuatan struktur. Selanjutnya dikembangkan metode yang mengandalkan daktilitas struktur yang dikenal sebagai Desain Kapasitas. Perkembangan terakhir perencanaan bangunan tahan gempa yang menggunakan device adalah sistem kontrol pasif maupun sistem kontrol aktif. Perbedaan dari sistem kontrol tersebut adalah ada tidaknya energi (gaya kontrol) luar yang drterapkan pada struktur di mana pada sistem kontrol aktif diterapkan energi (gaya kontrol) luar pada struktur.
Metode klasik dari sistem kontrol pasif adalah yang dikenal sebagai 'capacity design'.Konsep Disain Kapasitas ini merupakan aplikasi dari konsep daktilitas dimana energi gempa harus dipencarkan secara baik dalam struktur melalui mekanisme sendi plastis. Sistem kontrol pasif lainnya adalah viscoelastic damper, passive mass damper, base isolator, dsb. Oleh karena sistem kontrol pasif tidak lagi cukup efektif dalam mereduksi efek gempa pada struktur tinggi yang mempunyai jumlah mode getar yang banyak maka diterapkan sistem kontrol aktif pada struktur yang di antaranya adalah Active Bracing System, Active Tendon Control, Active Force, dsb.
Karena sistem kontrol aktif cukup merugikan biladitinjau dan sudut ekonomi maka dikembangkan sistem kontrol hybrid yang merupakan gabungan dan sistem kontrol pasif dan sistem kontrol aktif dengan tujuan menutupi keterbatasan masing-masing sistem kontrol di mana sistem kontrol pasif akan mereduksi efek-efek gempa kecil sampai menengah dan sistem kontrol aktif akan mereduksi efek-efek gempa menengah sampai besar.
Salah satu algoritma kontrol klasik yang dapat dikategorikan sebagai linear feedback adalah dengan menggunakan Linear Quadratic Regulator Active Force feedback di mana fungsi gaya kontrol merupakan fungsi linier terhadap respon struktur dan kemudian dikembangkan algoritma kontrol yang dikategorikan sebagai non-linier feedback yaftu Non-Unier Velocity Feedback, terbukti cukup efektif dalam mereduksi respon struktur akibat gempa bumi.
Dalam skripsi ini, sistem kontrol hybrid (Base Isolator + Active Force) yang diformulasikan berdasarkan kedua algoritma di atas) dianalisa secara dinamik dengan menggunakan program komputer MATLAB_ dan SIMULINK_9 . Analisa dinamik yang dilakukan adalah analisa time history dengan metode integrasi Runge-Kutta orde 4, karena dengan menggunakan analisa ini dapat diketahui respon time history struktur bangunan secara lengkap selama terjadi gempa. Sistem kontrol hybrib tersebut disimulasikan terhadap struktur portal geser delapan lantai yang dikenai percepatan gempa El Centro pada komponen utara-selatan (NS) (1940), gempa San Fernando (NS) (1971) dan Kobe (NS) (1995), dan hasilnya dibandingkan dengan sistem kontrol pasif (Base Isolator) dan sistem tanpa kontrol. Dan terakhir, hasil dari kedua algoritma yaitu linier dan non-linier feedback dibandingkan.
Hasil simulasi menunjukkan-reduksi interstory drift sampai dengan 78% dapat dicapai oleh struktur yang dilengkapi dengan Bl, dan sampai dengan 81% dapat dicapai oleh struktur yang dilengkapi dengan sistem konrol hybrid, yang dikenai percepatan gempa San Fernando. Dan dari kedua algoritma yang diperbandingkan pada skripsi ini ternyata bahwa selain algoritma dengan Non-Unier Velocity Feedback memberikan hasil yang lebih baik 12 % daripada dengan Linier Quadratik Regulator juga sederhana dalam implementasinya.
Dengan sistem kontrol di atas, struktur dapat didesain dengan dimensi yang lebih kecil, dan tanpa resiko kerusakan struktural dan arsitektural pada saat terjadinya gempa bumi, sehingga lebih meningkatkan-fungsional dan keamanan bagi bangunan.
Dan selanjutnya dalam mendesain sistem kontrol suatu struktur dengan mempertimbangkan properties struktur dan karakteristik dominan gempa di daerah tersebut diharapkan dapat menentukan alat kontrol yang paling efektif untuk mereduksi respon struktur dengan algoritma kontrol yang paling tepat.

"
2000
S34943
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yotrisno
"Kebutuhan struktur jembatan untuk tol layang mengalami peningkatan yang pesat. Hal ini disebabkan oleh meningkatnya jumlah kendaraan yang melintas dan mengakibatkan kapasitas lajur jalan tidak mampu untuk memenuhi kebutuhan pengguna jalan. Struktur jembatan memiliki beban mati yang besar sehingga mengakibatkan kebutuhan kapasitas struktur untuk menahan gaya gempa menjadi lebih besar. Kebutuhan kapasitas struktur yang besar menyebabkan dimensi pilar jembatan menjadi lebih besar. Pengurangan dimensi pilar jembatan dapat dilakukan dengan menggunakan sistem isolasi gempa, yang berfungsi untuk meningkatkan periode getar alami dan meningkatkan nilai redaman dari struktur. Peningkatan periode getar alami dan peningkatan nilai redaman struktur mengakibatkan percepatan gempa yang dialami oleh struktur menjadi lebih kecil. Sistem isolasi gempa menggunakan isolator tipe lead rubber bearing, yang dapat memberikan redaman hingga 30. Penelitian ini menyelidiki efek perubahan kekakuan lead rubber bearing yang terjadi akibat faktor lingkungan, efek perubahan ketinggian pilar, dan efek perubahan dimensi pilar terhadap performa lead rubber bearing. Metode analisa yang digunakan untuk penelitian ini adalah analisa riwayat waktu non-linear.

The need of bridge structure for toll overpass has increased rapidly, due to the increasing number of vehicles and resulting road capacity not being able to meet the needs of road users. Bridge structure has a large dead load resulting the need for its structural capacity to withstand earthquake forces become large. This causes the pier dimension of the bridge to become larger. Reduction of bridge pier dimension can be done by using earthquake isolation system, serves to increase the natural vibration period and increase the damping value of the structure. Increasing the natural vibration period and the damping value of the structure resulted in smaller earthquake acceleration experienced by the structure .The earthquake isolation system uses a lead rubber bearing insulator, which can provide damping up to 30 . This study investigated the effect of lead rubber bearing stiffness caused by environmental factor, pier height change effect, and pier dimension change effect on lead rubber bearing performance. The analytical method used for this research is non linear time history analysis.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>