Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 31578 dokumen yang sesuai dengan query
cover
Rahmapuspita
Program Pascasarjana Universitas Indonesia, 2009
T26909
UI - Tesis Open  Universitas Indonesia Library
cover
Sandi Sufiandi
"Tesis ini akan membahas karakterisasi absorbansi darah pada rentang 190 sampai dengan 1100 nm per 10 nm pada pasien demam dengue dengan menggunakan spektrofotometer UV-Vis. Data numerik yang diperoleh kemudian dilakukan pengenalan pola karakteristiknya menggunakan kecerdasan buatan. Hasil yang diperoleh menggambarkan karakteristik yang berbeda antara rentang 190 s/d 380 dan 610 s/d 1100 nm dengan 400 s/d 600 nm. Data numerik absorbansi 400 s/d 600 nm diproses dengan metoda self organizing maps menunjukan kestabilan hasil walaupun tingkat pengenalannya masih rendah.

This thesis is describing characterization of blood absorbance in range of 190 through 1100 nm per 10 nm of dengue fever patient using UV-Vis spectrophotometer. Collected numerical data is processed by pattern recognition using artificial intelligence. Result shown that characteristics between 190-380 nm and 610?1100 nm differ from 400 nm?600 nm. 400 - 600 nm absorbance numerical data processed using self organizing maps showing output of recognition stability, even degree of recognition was still low."
Depok: Program Pascasarjana Universitas Indonesia, 2009
T-Pdf
UI - Tesis Open  Universitas Indonesia Library
cover
cover
Fakultas Teknik Universitas Indonesia, 2000
TA2795
UI - Tugas Akhir  Universitas Indonesia Library
cover
cover
Shabrina Tiffany
"Keberadaan COVID-19 di Indonesia saat ini bukanlah satu-satunya wabah penyakit yang harus diwaspadai. Menteri Kesehatan mengatakan ada penyakit yang tidak kalah  berbahaya dan juga tidak kalah mematikan dibandingkan dengan wabah penyakit COVID-19, yaitu Demam Berdarah Dengue. Penyakit ini sudah sepatutnya untuk diwaspadai mengingat jumlah kasusnya yang semakin meningkat dan melebihi jumlah kasus penyakit COVID-19. Faktor cuaca seperti curah hujan, temperatur, dan kelembapan merupakan faktor yang sangat berpengaruh dalam penyebaran parasit dan vektor penular DBD. Untuk mengoptimalkan upaya pencegahan dan penanganan DBD, perlu dilakukannya prediksi terkait jumlah insiden DBD.
Dalam tugas akhir ini dilakukan proses prediksi jumlah insiden DBD di DKI Jakarta dengan memperhitungkan faktor iklim (curah hujan, kelembapan, dan temperatur) menggunakan metode Extreme Learning Machine dan metode Artificial Neural Network-Back Propagation serta membandingkan kinerja dari kedua metode tersebut.  Berbeda dari Artificial Neural Network-Back Propagation, Extreme Learning Machine tidak membutuhkan proses iterasi untuk update parameter.
Dengan menggunakan data variabel cuaca dan data jumlah insiden DBD kumulatif, Extreme Learning Machine dapat memberikan hasil prediksi yang lebih akurat dibandingkan dengan  Artificial Neural Network - Back Propagation. Extreme Learning Machine dengan persentase data training sebesar 90% menunjukkan hasil prediksi yang lebih baik dibandingkan dengan persentase data training lainnya yang digunakan dalam tugas akhir ini yaitu sebesar 80% dan 70%.

The existence of COVID-19 currently in Indonesia is not the only disease which must be watched out. The Health Ministry has said that there was a disease that is as dangerous as COVID-19. That disease is Dengue Fever. Dengue Fever also must be given an extra caution because it is noted that until now the number of dengue cases continues to increase and exceeds COVID-19 cases. The weather factors, such as rainfall, temperature, and humidity, are a very influential factor in the spread of parasites and infectious vectors of dengue fever.  To optimize the dengue handling and prevention effort, it is important to make the dengue cases prediction.
In this final paper, the number of dengue incidences will be predicted by involving weather factors (rainfall, temperature, and humidity) using Extreme Learning Machine and Artificial Neural Network-Back Propagation and also comparing the both of their performance. Unlike the Artificial Neural Network-Back Propagation, Extreme Learning Machine does not need the iteration process to update the parameter.
The result shows that Extreme Learning Machine can give the dengue incidences prediction  which is more accurate than the dengue incidences prediction that is given by using Artificial Neural Network-Back Propagation. Extreme Learning Machine by using 90% training data can show the better prediction result than other training data percentage which is used in this final paper, 80% and 70%.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Universitas Indonesia, 2005
S27401
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Candra Kusuma
"Tugas akhir ini bertujuan untuk membuat sistem pengenal huruf tulisan tangan dengan menggunakan algoritma Backpropagation Neural Network. Untuk mendapatkan representasi huruf dari bentuk tulisan tangan pada sub-sistem ekstraksi ciri digunakan metode Freeman chain code dan pryeksi sumbu sehingga akan dihasilkan rangkaian kode kerangka citra tulisan huruf. Proses penghalusan dan penipisan citra dilakukan dengan algoritma klasik pada sub-sistem pra_pengolahan. Pengujian menghasilkan tingkat keberhasilan rata-rata 92,31% untuk citra huruf A?Z, 76,92% untuk citra huruf a?z dan 90% untuk citra angka 0-9."
Depok: Fakultas Teknik Universitas Indonesia, 2002
S39079
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hepatika Zidny Ilmadina
"Leptomeningeal metastatis merupakan indikasi keganasan yang terjadi pada pasien leukemia. Meskipun hanya memiliki porsi 30-40% yang menyebabkan kekambuhan keganasan pada pasien leukemia, hal tersebut yang dijadikan dasar dalam menentukan pengobatan terbaik yang diberikan kepada mereka. Leptomeningeal metastasis lebih baik dideteksi dengan menggunakan Magnetic Resonance Imaging (MRI) karena sensitivitasnya yang tinggi dalam citra neuraxis. Kemampuan expert yang tinggi untuk melihat dan menganalisis sangat diperlukan dalam membaca hasil Brain MRI pasien leukemia dengan suspek leptomeningeal metastasis. Oleh karena itu, klasifikasi akan memakan waktu yang lama dan memungkinkan kesalahan pembacaan hasil. Berbagai metode telah banyak diusulkan dan dikembangkan dalam klasifikasi Brain MRI untuk mendapatkan hasil terbaik namun tantangan dalam penelitian ini adalah leptomeningeal metastasis yang karakteristiknya lebih sudah dikenali dibandingkan tumor pada otak. Oleh karena itu peneliti mengusulkan pengklasifikasian leptomeningeal metastasis dengan menggunakan metode CNN via transfer learning. Dengan berbagai skenario yang dilakukan, hasil akurasi terbaik adalah implementasi metode CNN (ResNet50) via transfer learning mencapai 82,22%.

Leptomeningeal metastasis is an indication of malignancy that occurs in leukemia patients. Although it only has a 30-40% portion, which causes recurrence of malignancy in leukemia patients, it is the basis for determining the best treatment given to them. Leptomeningeal metastases are better detected by using Magnetic Resonance Imaging (MRI) because of their high sensitivity in neuroaxis images. A high expert ability to see and analyze is needed in reading the brain MRI results of leukemia patients with suspected leptomeningeal metastasis. Therefore, the classification will take a long time and may an incorrect reading of the results. Various methods have been proposed and developed in the brain MRI classification to get the best results, but the challenge in this research is leptomeningeal metastasis, whose characteristics are more not recognizable than tumors in the brain. Therefore, we propose the classification of leptomeningeal metastasis using the CNN method via transfer learning. With various scenarios done, we obtained the best accuracy result is the implementation of the CNN (ResNet50) method via transfer learning, up to 82.22%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>