Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 176073 dokumen yang sesuai dengan query
cover
Hermanto Ang
"Pada sistem kendali konvensional, batasan-batasan seperti amplitudo dan slew rate sinyal kendali tidak diperhitungkan pada proses pengendalian. Hal ini tentu dapat menyebabkan hasil kendali menjadi kurang baik, terutama jika terjadi pemotongan paksa terhadap sinyal kendali sebelum masuk ke plant. Untuk mengatasi hal tersebut dirancanglah suatu pengendali Model Predictive Control (MPC). Dengan MPC, keluaran proses yang akan datang dapat diprediksi dan batasan-batasan yang ada tidak diabaikan sehingga keluaran sistem menjadi bagus. Selain keluaran sistem menjadi bagus, adanya batasan juga dapat membuat kinerja alat menjadi optimal.
Skripsi ini bertujuan untuk merancang jenis pengendali Model PredictiveControl (MPC) yang akan diterapkan pada sebuah sistem nyata Level/Flow and Temperature Process Rig 38-003 dengan metode Quadratic Programming. Dalam merancang pengendali MPC untuk Level/Flow and Temperature Process Rig 38-003 ini, penulis menggunakan model yang berbentuk ruang keadaan yang didapat dengan menggunakan metode Kuadrat Terkecil berdasarkan pada data masukan dan data variabel keadaan alat. Masukan sistem adalah tegangan untuk mengatur kondisi servo valve dan keluran yang akan dikendalikan adalah temperatur air hasil keluaran Heat Exchanger sebelum masuk ke sistem Radiator Cooler.
Dari uji eksperimen terbukti bahwa metode pengendali MPC dengan constraints memberikan hasil yang lebih baik dibandingkan dengan metode pengendali Ruang Keadaan. Hal tersebut dapat dilihat dari tanggapan sistem hasil pengendalian MPC dengan constraints yang lebih halus dibandingkan dengan tanggapan sistem hasil pengendalian dengan metode pengendali Ruang Keadaan. Perubahan sinyal kendali pengendali MPC dengan constraints juga jauh lebih halus dibandingkan dengan perubahan sinyal kendali pengendali Ruang Keadaan. Kondisi ini akan meningkatkan ketahanan fisik sistem selama uji eksperimen.

In conventional control system, some constraints such as amplitude and control signal?s slew rate are not included in the controlling process. So, the result of the control process is not good enough especially if the control signal is forcibly cut before entering the plant. In order to overcome this problem, a Model Predictive Controller is designed. In this MPC control scheme, the few next steps of process output are going to be predicted and some constraints will be ignored so the system output will become precise. In other hand, the occurrence of constraints will improve system?s performance into an optimum condition.
The final purpose of this thesis is to design a Model Predictive Controller (MPC) using Quadratic Programming method which will be applied on a real time system of Level/Flow and Temperature Process Rig 38-003. In designing MPC controller for Level/Flow and Temperature Process Rig 38-003, the writer uses system?s model on state space form which is obtained by using Least Square method in the basis of input and state variables data of the plant. Input for the plant is voltage which will be used to control the position of servo valve whereas the controlled output is water temperature on the pipe that connects Heat Exchanger's output line and Radiator Cooler's input line.
Experiments conducted prove that MPC with constraints controlling scheme will give a better results than State Controller controlling scheme. Generally, it can be seen that system response to MPC controller is much smoother than system response to State Controller. MPC controller also has smoother control signal variance compared to State Controller control signal variance. This condition will actually raise the system's physical reliability during the experiment.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40479
UI - Skripsi Open  Universitas Indonesia Library
cover
Alberto Boy Dopo S.
"Generalized Predictive Control merupakan suatu metode perancangan pengendali swatala berbasis model proses, yaitu model proses digunakan secara eksplisit untuk mendisain pengendali dengan meminimumkan suatu fungsi kriteria. Oleh karena itu, untuk mendapatkan performa pengendali yang baik diperlukan juga metode identifikasi model yang baik pula.
Pada percobaan ini dilakukan perancangan dan implementasi pengendali swatala pada Pressure Process Rig (Feedback 38-714) dengan menggunakan metode Recursive Least Square sebagai estimator dan Generalized Predictive Control sebagai aturan sintesa parameter pengendali. Pada percobaan dilakukan pengendalian dengan horizon, N , yang tetap sebesar 3. Pada percobaan pertama dilakukan simulasi pengendalian model linear Pressure Process Rig dengan menggunakan nilai faktor pembobot, hGPC. sebesar 4 dan faktor pelupaan, hRLS, sebesar 0,9999.
Simulasi ini menunjukkan keberhasilan pengendalian model linear Pressure Process Rig karena keluaran sistem yang dihasilkan dapat mengikuti pergerakan setpoint dan juga galat tunak dapat hilang dalam waktu yang singkat. Percobaan berikutnya merupakan pengendalian sistem nyata Pressure Process Rig dengan menggunakan beberapa nilai hGPC dan hRLS yang divariasikan.
Dari hasil percobaan diketahui bahwa nilai hGPC sebesar 2 dan nilai hRLS sebesar 0,9999 merupakan nilai yang tepat digunakan agar performa pengendali dapat maksimal. Dengan nilai ini pengendali dapat melakukan fungsinya secara maksimal, yang ditandai dengan kecilnya nilai settling time. Dari percobaan ini juga diketahui bahwa semakin kecil nilai faktor pembobot, hGPC maka semakin cepat tanggapan sistem, selain itu apabila nilai faktor pelupaan, hRLS, semakin mendekati satu maka pergerakan theta semakin tidak terpengaruh oleh derau."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S40004
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lumban Gaol, Abdon Jonas
"Pengendalian level fluida di dalam tabung dan pengendalian aliran fluida antar beberapa tabung merupakan permasalahan dasar dalam industri proses. Masukan aliran fluida ke dalam tabung dan antar tabung haruslah dijaga pada kondisi tertentu sehingga keluaran sistem bisa sesuai dengan yang diinginkan. Berbagai macam pengendali dirancang untuk mengendalikan level fluida ini dengan baik, sehingga error yang dihasilkan pun semakin bisa diminimalisir. Pengendali PID dan MPC merupakan contoh pengendali yang bisa digunakan dalam mengontrol level fluida tersebut.
Di dalam seminar tesis ini akan dirancang pengendali PID (Proportional-Integral-Derivative) dan Model Predictive Control (MPC) untuk mengendalikan level fluida di dua tangki terhubung. Sebelum pengendali PID dan MPC ini dirancang, model non-linier terlebih dahulu dibentuk bedasarkan sistem dua masukan aliran fluida dan dua keluaran sistem berupa ketinggian level fluida pada kedua tabung. Model non-linier sistem multivariabel (Two Input Two Output - TITO) ini kemudian dilinierisasi pada titik kerja yang dipilih untuk memperoleh nilai ruang keadaan A, B, C dan D yang kemudian digunakan untuk membentuk fungsi alih sistem. Selain proses linierisasi, identifikasi dengan metode Kuadrat Terkecil juga dilakukan untuk menghasilkan model linier sistem yang baru sebagai pendekatan dalam mengontrol model non-linier sistem dengan MPC.
Dalam sistem multivariabel coupled-tanks ini masih terdapat interaksi yang kuat antar variabel masukan-keluaran, sehingga fungsi alih dekopler pun dirancang untuk mengurangi atau menghilangkan efek kopling antar variabel masukan-keluaran ini. Pengendali PID dan MPC yang dirancang akan digunakan dalam simulasi untuk mengendalikan model linier/fungsi alih (dengan dekopler) dan model non-linier sistem.
Hasil simulasi pengendali PID dan MPC untuk model linier menunjukkan respon sistem yang baik, dimana waktu settling-nya cenderung relatif kecil. Juga hasil simulasi pengendali PID dan MPC untuk model non-linier, meskipun menunjukkan respon sistem yang cenderung lambat, masih bisa dikatan relatif baik. Setelah membandingkan hasil simulasi sistem dengan pengendali PID dan MPC yang dirancang, maka MPC merupakan pengendali yang lebih baik digunakan untuk mengendalikan sistem multivariabel coupled-tanks ini.

The control of liquid level in tanks and flow between tanks is a basic problem in the process industries. The amount of liquid flowed into tanks and the flow of liquid between tanks has to be maintained at certain conditions in order to meet the desired performances. Many controllers have been designed to control the liquid level in tanks with the intention of reducing errors during and or after control process. PID controller and MPC are two of many controllers that could be designed to control the liquid level in tanks.
In this Master's thesis, PID (Proportional-Integral-Derivative) controller and Model Predictive Control (MPC) are designed to control the liquid levels in two coupled tanks. Before designing PID controller and MPC, the complete nonlinear dynamic model of the plant needed to be introduced for a case involving two input flows of liquid and two output variables, which are the level of the liquid in two tanks.
This multivariable (Two Input Two Output - TITO) nonlinear model would be then linearised based on selected operating point in order to obtain the value of state-space variables A, B, C and D. These values are converted to transfer function form. Besides that, system identification with Least Square method is also used to yield a new state-space model as an approach model to control the nonlinear model with MPC. Due to the high interactions between input-output variables, decoupler needed to be designed with the aim of reducing or eradicate these between input-output variables coupling effects. Afterwards, the designed PID controller and MPC will be used in simulation in controlling the linear model/transfer function (with decoupler) and the nonlinear model of the coupled-tanks multivariable system.
The result of simulation using PID controller and MPC in controlling the linear model of the system shows good performance in terms of rise time and settling time. In Addition, the result of simulation using nonlinear model, despite the slow system's response, shows satisfactory performance in terms of steady-state behavior, in which the output signals eventually meets the desired reference signals. After comparing the results of system simulation both with PID Controller and MPC, the writer may then infers that MPC is the better one to control this coupled-tanks multivariable system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T34991
UI - Tesis Membership  Universitas Indonesia Library
cover
Camacho, Eduardo F.
"Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors"
London: Springer, 2007
629.8 CAM m
Buku Teks  Universitas Indonesia Library
cover
Antoni Aldila
"Sistem tata udara presisi atau yang lebih dikenal dengan Precision Air Conditioning (PAC) merupakan mesin refrigerasi yang bekerja berdasarkan konsep termodinamika. Sistem tata udara presisi digunakan di ruang pusat data untuk menjaga temperatur dan kelembaban di dalam kabinet agar peralatan IT di dalam kabinet tidak cepat rusak. Temperatur ideal yang harus dicapai di dalam kabinet berkisar antara 20º - 25ºC, sedangkan kelembaban relatif (RH) yang harus dijaga di dalam kabinet berkisar antara 45-55%. Namun untuk mencapai keadaan tersebut, dibutuhkan pengendalian sistem supaya sistem dapat bekerja dengan keluaran seperti yang diinginkan.
Model predictive control merupakan salah satu metode pengendali prediktif yang populer digunakan di dunia indutri. Sistem tata udara presisi yang dikendalikan dalam penelitian ini merupakan sistem multi input single output (MISO) dengan masukan berupa kecepatan putaran kipas kompresor dan kecepatan aliran udara volumetrik, dan keluaran yang dikendalikan adalah suhu keluaran dari kondenser kedua yang menuju kabinet dari sistem tata udara presisi. Diuji tiga model sistem tata udara presisi, model linier, model nonlinier tanpa beban heat sensible peralatan IT, dan model nonlinier dengan beban sensible peralatan IT yang divariasikan dengan pendekatan model linier biasa hasil identifikasi PO-MOESP dan model linier dengan vektor bias hasil identifikasi menggunakan metode kuadrat terkecil.
Hasil pengendalian MPC untuk ketiga plant sistem tata udara presisi menujukkan performa yang baik dalam pengendalian, dilihat dari keluaran sistem yang mengikuti trajektori acuan yang diberikan.

Precision Air Conditioning (PAC) is a refrigerant machine that works based on thermodynamics concept. PAC is in implemented data center in order to stabilize the temperature and the humidity in cabinet in order to prevent IT damage integrated in the cabinet. The desired ideal temperature for the cabinet is from 20oC to 25oC and the desired relative humidity (RH) is from 45-55%. However, to achieve such a state, it takes control of the system so that the system can work with the output as desired.
Model predictive control is a predictive control method which is popularly used in industries world. Precision air conditioning system are controlled in this study is a multi-input single output (MISO) system with input in the form of fan rotation speed of the compressor and the air volumetric flow rate, and the controlled output is the temperature of the output of the second condenser to the cabinet of the precision air conditioning system. Tested three models of precision air conditioning system, linear models, nonlinear models without the burden of sensible heat IT equipment, and nonlinear models with variation of sensible heat IT equipment load with ordinary linear model approach to the identification of PO-MOESP and linear models with bias the results of identification using the method least squares.
MPC control results for the third plant of PAC systems showed good performance in control, viewed from the system output to follow a given reference trajectory.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T36013
UI - Tesis Membership  Universitas Indonesia Library
cover
Ilham Maulana
"Turbo expander TE dan Model Predictive Control MPC diusulkan untuk digunakan pada unit depropanizer untuk meningkatkan recovery propana dan memperbaiki kinerja pengendalian di unit tersebut. Model yang digunakan dalam MPC adalah model first-order plus dead time FOPDT, yang diuji kinerja pengendaliannya menggunakan pengujian perubahan set point SP dan gangguan, dengan ukuran kinerjanya menggunakan integral of absolute error IAE. Hasilnya menunjukkan bahwa penggunaan TE pada depropanizer mampu meningkatkan recovery propana sebesar 8,44 dari 82,11 menjadi 90,55. Sedangkan untuk struktur pengendalian, digunakan pengendalian tekanan pada TE menggunakan pengendali proportional-integral, PI, pengendalian komposisi propana pada aliran distilat menggunakan MPC dan pengendalian tekanan kolom depropanizer menggunakan MPC.
Setelah melakukan pengujian perubahan SP didapatkan bahwa kinerja pengendali MPC pada pengendali komposisi dan pengendali tekanan depropanizer dapat memperbaiki kinerja pengendali PI sebesar 1,62 dan 93,40. Sedangkan pada pengujian terjadinya gangguan didapatkan bahwa kinerja pengenali MPC pada pengendali komposisi dan pengendali tekanan depropanizer dapat memperbaiki kinerja pengendali PI sebesar 60,54 dan 6-,21 sehingga pengendali MPC lebih baik dibandingkan pengendali PI untuk digunakan pada pengendali komposisi dan pengendali tekanan pada depropanizer yang menggunakan Turbo Expander.

Turbo expander TE and Model Predictive Control MPC is suggested for depropanizer unit to increase propane recovery and improve control performance of the unit. The model used in the MPC is first order plus dead time FOPDT, which tested the performance of the control using set point and disturbance change test with measurement of the performance using integral of absolute error IAE. As a result, use of TE in the depropanizer able to increase recovery of propane of 8,44 from 82.11 to 90.55. As for the control structure, pressure control is use on the TE using proportional integral control, composition control in the distillate flow using MPC, and pressure control in depropanizer column using MPC.
After doing SP changed test, the result showed performance of MPC controller at composition control and pressure control in depropanizer can improve performance compared by PI controller of 1.62 and 93.40. and then for disturbance rejection test, the result showed the MPC controller perfromance can improve PI controller performance at composition control and pressure control in depropanizer is able to improve PI controller performance by 60.54 and 60.21. So that, MPC controller is better than PI controller if it use at composition controller and pressure controller in depropanizer unit with Turbo Expander.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Panji Seto Damarjati
"Pengendali prediktif menggunakan prediksi dari keluaran sistem yang akan dikendalikan. Nilai prediksi ini didapat dari pemodelan sistem, dimana penggunaan model sistem pada proses perancangan, menjadi ciri khas dari pengendali prediktif. Pengendali prediktif atau dalam banyak literatur sering disebut sebagai Model Predictive Control, merupakan metode pengendali yang dapat memperhitungkan batasan-batasan (costraints) yang ada dalam sistem. Sehingga kehadiran constraints pada sistem dapat diperhitungkan dengan menggunakan algoritma MPC.
Dalam skripsi ini algoritma MPC diterapkan pada sistem dua tangki dengan satu masukan dan satu keluaran. Masukan sistem berupa tegangan pompa sedangkan keluarannya berupa tinggi fluida pada tangki. Batasan amplitudo sinyal kendali diterapkan pada perancangan ini untuk melihat kinerja MPC dalam menangani constraints. Solusi Quadratic Programming yang digunakan untuk menangani kasus MPC dengan constraints pada skripsi ini adalah metode Active Set. Dalam metode Active Set, nilai sinyal kendali diambil supaya ada bagian dari pertidaksamaan constraints menjadi persamaan. Kemudian dengan menggunakan kondisi Karush-Kuhn-Tucker solusi yang berupa nilai optimal dari perubahan sinyal kendali akan didapat.
Hasil simulasi yang dilakukan menunjukkan, keluaran selalu dapat mengikuti trayektori acuan dan sinyal kendali yang didapat juga baik. Hasil simulasi juga menunjukkan bahwa faktor bobot pada sinyal kendali R, dan panjangnya Prediction Horizon P, sangat mempengaruhi unjuk kerja dari algoritma MPC. Perbandingan juga dilakukan antara alogritma MPC constraints dengan algoritma pengendali Formula Ackermann, dimana MPC constraints menunjukkan kinerja yang lebih baik."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S40106
UI - Skripsi Membership  Universitas Indonesia Library
cover
Satrio Aziz Makarim
"Penelitian ini bertujuan untuk merancang sebuah sistem control dari sebuah robot inverted pendulum menggunakan Model Predictive Control. Dalam penelitian akan digunakan sensor sudut dan posisi sebagai data masukkan untuk komputasi nilai keluaran yang optimal yang perlu diberikan kepada servo dan motor. Komputasi akan dilakukan di komputer yang dihubungkan dengan robot menggunakan protokol komunikasi UART. Program pada komputer juga akan menampilkan kondisi robot. Model Dinamika yang digunakan akan disimulasikan terlebih dahulu sebelum digunakan. Robot dapat mengirimkan data dari sensor dan menjalankan keluaran optimal yang sudah dikomputasi.

This research is aimed to design a control system from inverted pendulum robot using Model Predictive Control. This research will be using angular and position sensor as input for computing the optimal output for the motor and servo. The computation will be done by a computer that is connected with the robot using UART Communication Protocol. The program that is runned by the computer will also display the robot condition. Dynamics model that will be used will be simulated first before real application. The inverted pendulum robot is able to send data from sensor to the computer and run the optimal output that has been computed."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fachry Arrifqi
"Ester base oil merupakan pelumas alami yang telah diterima secara luas dikarenakan kemampuan pelumasannya yang tinggi, serta keunggulan seperti kinerja suhu rendah, indeks viskositas yang tinggi, pengurangan gesekan yang sangat baik, dan sifat anti aus. Proses sintesis ester base oil melibatkan dua tahapan utama, yaitu oligomerisasi dan esterifikasi. Penelitian ini bertujuan untuk mendapatkan rancangan serta mendesain pengendalian proses pada proses pre- treatment oligomerisasi pabrik ester base oil dengan multivariable model predictive control (MMPC) 4x4. Metode yang digunakan untuk mendapatkan model first order plus dead time (FOPDT) 4x4 adalah dengan cara dilakukan identifikasi sistem menggunakan metode Smith, metode Wade, dan metode Solver. Selanjutnya, ditentukan model FOPDT terbaik dengan membandingkan nilai root- mean-square error (RMSE) terkecil dari setiap metode. Metode tuning yang digunakan untuk MMPC adalah metode Shridhar-Cooper dilanjutkan dengan fine- tuning untuk mendapatkan nilai parameter P (prediction horizon), M (control horizon), dan T (sampling time). Parameter MMPC tersebut akan diuji berdasarkan respon kinerja pengendali terhadap pengujian set point (SP) tracking dan pengujian disturbance rejection. Kinerja MMPC juga akan dibandingkan dengan kinerja pengendali propotional-integral (PI) dengan perhitungan integral absolute error (IAE) dan integral square error (ISE). Hasil identifikasi sistem didapatkan model FOPDT terbaik menggunakan metode Smith yaitu M1V3, M2V1 ; metode Wade yaitu M1V2, M2V3, M2V4, M4V2 ; metode Solver yaitu M1V1, M1V4, M2V2, M3V1, M3V2, M3V3, M3V4, M4V1, M4V3, M4V4. Metode fine-tuning pada penyetelan MMPC menghasilkan parameter P, M, T terbaik masing-masing sebesar 350, 300, dan 2. Pada pengujian SP ttacking, MMPC menunjukkan kinerja terbaik dalam pengendalian suhu sedangkan kinerja pengendali PI lebih baik dalam pengendalian laju alir. Pada pengujian disturbance rejection, kinerja MMPC lebih baik dibandingkan pengendali PI dengan perbaikan kinerja pengendalian sebesar 7,16% - 61,35% untuk nilai IAE dan 13,96% - 88,60% untuk nilai ISE.

Ester base oil is a natural lubricant widely accepted due to its high lubricating ability, as well as advantages such as low-temperature performance, high viscosity index, excellent friction reduction, and anti-wear properties. The synthesis process of ester base oil involves two main stages, namely oligomerization and esterification. This research aims to obtain a design and design process control in the pre-treatment process of oligomerization in the ester base oil plant with multivariable model predictive control (MMPC) 4x4. The method used to obtain the first-order plus dead time (FOPDT) 4x4 model is by identifying the system using Smith's method, Wade's method, and Solver's method. Furthermore, the best FOPDT model is determined by comparing the smallest root-mean-square error (RMSE) values from each method. The tuning method used for MMPC is the Shridhar-Cooper method followed by fine-tuning to obtain the parameter values P (prediction horizon), M (control horizon), and T (sampling time). These MMPC parameters will be tested based on controller performance responses to set point (SP) tracking testing and disturbance rejection testing. The performance of MMPC will also be compared with proportional-integral (PI) controllers using integral absolute error (IAE) and integral square error (ISE) calculations. The results of the system identification obtained the best FOPDT model using Smith's method, namely M1V3, M2V1; Wade's method, namely M1V2, M2V3, M2V4, M4V2; Solver's method, namely M1V1, M1V4, M2V2, M3V1, M3V2, M3V3, M3V4, M4V1, M4V3, M4V4 .The fine-tuning method in MMPC tuning resulted in the best P, M, T parameters of 350, 300, and 2 respectively. In SP tracking testing, MMPC showed the best performance in temperature control while PI controller performance was better in flow rate control. In disturbance rejection testing, MMPC performance was better than PI controllers with performance improvement ranging from 7.16% to 61.35% for IAE values and 13.96% to 88.60% for ISE values."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raufzha Ananda
"Kemajuan teknologi dibidang otomotif telah berkembang sangat pesat. Salah satu perkembangannya yaitu sistem kendali pada kendaraan dengan menggunakan mikroprosesor. Sistem kendali ini digunakan untuk pengamanan kendaraan yang dapat mengurangi angka kecelakaan yang terjadi. Sistem keamanan yang dikembangkan untuk mencegah terjadinya kecelakaan berkendara yang berpusat pada stabilitas yaw dan slip samping pada kendaraan. Dalam rangka mengembangkan sistem tersebut dibutuhkan pengujian berulang-ulang untuk mendapatkan hasil yang sesuai dengan keinginan. Perancangan yang dibantu dengan simulasi Hardware in The Loop (HIL) merupakan metode yang tepat untuk melakukan pengujian dari sistem. Pengujian ini dapat mengurangi waktu dan jumlah uji kendaraan yang sebenarnya di jalan, menurunkan biaya pengembangan dan meningkatkan kualitas pengembangan produk baru. Pada penelitian ini akan dilakukan simulasi HIL menggunakan Model Predictive Control (MPC) yang diawali dengan simulasi Software In The Loop untuk mempelajari dan menguji sistem kendali untuk stabilitas laju yaw pada otomotif. Dimana hasil pengujian simulasi HIL berjalan cukup baik dan bekerja secara real time.

Advances in automotive technology has developed very rapidly. One development is the vehicle control system using a microprocessor. This control system is used for security vehicles that can reduce the number of accidents that occur. Security system developed to prevent accidents driving centered yaw stability and side slip of the vehicle. In order to develop such a system required repeated testing to get the results as you wish. The design with Hardware in The Loop (HIL) is an appropriate method for the testing of the system. This test can reduce the time and the amount of the actual vehicle test on the road, lowering development costs and improve the quality of new product development. This research will be conducted HIL simulation that use Model Predictive Control (MPC) with doing Software In The Loop Simulation previuosly to learn and test the stability control system for yaw rate at automotive. The result of the simulation are doing very well and give the real time output.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59847
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>