Hasil Pencarian

Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 148597 dokumen yang sesuai dengan query
cover
Iman Firmansyah Ika
"Logam busa merupakan material yang memiliki banyak rongga atau pori-pori sehingga banyak dipertimbangkan oleh para peneliti untuk diaplikasikan di dunia industri otomotif karena material ini memiliki sifat mekanis, termal, akustik, elektrik, dan kimia yang baik. Pembuatan logam busa dapat dilakukan dengan beberapa macam cara, salah satunya dengan cara menggunakan sinter dan pelarutan yang merupakan suatu proses pembentukan pori-pori pada logam dengan menggunakan jalur metode metalurgi serbuk.
Dalam penelitian ini menggunakan serbuk tembaga dan kalium karbonat sebagai bahan baku pembuatan tembaga busa. Perbedaan perbandingan antara logam dengan garam menghasilkan jumlah pori-pori yang berbeda sehingga mempengaruhi sifat fisis dan mekanis yang berbeda. Variabel yang digunakan dalam penelitian ini adalah persentase berat 60%, 50 %, 40 %, 30 %, 0 % kalium karbonat. Tiap variabel dikompaksi dengan tekanan 200 bar, lalu disinter pada temperatur 850 °C selama 2 jam dan setelah itu dilakukan proses pelarutan kalium karbonat dalam air hangat selama 2 jam. Kemudian untuk mengetahui sifat fisis dan mekanis pada tiap tembaga busa diuji porositas, densitas, kekuatan tekan dan dilakukan pengujian struktur mikro dengan menggunakan Scanning Electron Microscope (SEM) dan mikroskop optik.
Hasil dari penelitian ini berupa tembaga busa yang mempunyai ukuran pori-pori sebesar 197-928 µm. Densitas tembaga busa yang paling tinggi yaitu 2.75 gr/cm3 pada tembaga busa dengan persentase berat 30 % kalium karbonat dan yang paling rendah yaitu 1.28 gr/cm3 pada persentase berat 60 % kalium karbonat. Porositas tembaga busa yang paling tinggi yaitu 85.69 % pada persentase berat 60 % kalium karbonat dan yang paling rendah yaitu 69.29 % pada persentase berat 30 % kalium karbonat. Pada hasil pengamatan morfologi tembaga busa menunjukan bentuk pori-pori yang bulat dan memiliki jaringan koneksi antar pori. Hasil pengujian tekan menunjukan bahwa semakin tinggi persentase kalium karbonat dalam tembaga busa maka energi yang diserap oleh tembaga busa secara kualitatif semakin rendah.

Metal foams are materials which have many pores and are considered by the researchers to be applied in automotive industries because they have good mechanical, thermal, acoustic, electric, and chemical properties. The manufacturing of metal foams could be carried in several methods, one of these methods is to use lost carbonate sintering and dissolution process, which is a method to produce pores on metal by using powder metallurgy.
In this research, copper powder and potassium carbonate was used as raw materials for metal foam manufacturing. The ratio between metal and salt produced different amounts of pores that influenced their physical and mechanical properties. The ratio of potassium carbonate used in this research was 60%, 50%, 40%, 30%, and 0%. Each ratio were compacted with 200 bar pressure, and sinterized in 850°C for 2 hours, and then the potassium carbonate was dissolved in warm water for 2 hours. to investigate their physical and mechanical properties, on each copper were tested its porosity, density, compressive strength, and micro structural analysis were conducted by SEM and optical microscope.
The results of this research were copper foams with pores ranging from 197 ? 928 µm, the highest copper foam density was 2.75 gr/cm3on 30% potassium carbonate ratio, and the lowest was 1.28 gr/cm3 on 60% potassium carbonate density. The highest copper foam porosity was 85.69 % on 60% potassium carbonate, and the lowest was 69.29 % on 30% potassium carbonate. The morphology observation of the copper foams showed sphere-like pores and interconnected with each other. Compression test result showed that the higher potassium carbonate ratio on copper foams resulted in lower energy absorption by copper foams qualitatively.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41761
UI - Skripsi Open  Universitas Indonesia Library
cover
Khalid Mawardi
"Metalurgi serbuk merupakan salah satu proses produksi logam busa yang banyak digunakan untuk memperoleh struktur pori yang seragam. Dengan menggunakan variasi temperatur sinter 825°C, 850°C, 900°C dan 950°C serta variasi rata-rata ukuran partikel garam karbonat sebusar 841 m, 542 m, dan 420 m, memberikan pengaruh terhadap berbedanya struktur pori yang terbentuk pada tembaga busa pada masing-masing variabel. Penelitian ini bertujuan agar struktur pori yang terbentuk pada tembaga busa yang diproduksi dengan metoda ini dapat dikontrol sesuai dengan variabel yang digunakan.
Penelitian ini menunjukkan bahwa dengan semakin tingginya temperatur sinter, maka tingkat porositas tembaga busa akan semakin menurun hingga mencapai 71,748% dan densitasnya akan semakin meningkat hingga mencapai 2,531 gr/cm3 pada temperatur 950_C selama 2 jam. Hasil pengamatan makro dan mikro yang dilakukan juga menunjukkan bahwa semakin tinggi temperatur sinter dan semakin kecil ukuran butir garam karbonat, maka semakin banyak terbentuk sel pori yang bersifat terbuka.

Powder metallurgy is one kind of process to produce metal foam that is commonly used to achieve uniformity of pore structure. By using the temperatures 825°C, 850°C, 900°C, 950°C in sintering process and 841 m, 542 m, 420 m particle size of carbonate, have affected the differences in pore structures that are formed in the copper foam at each variabel. The purpose of this research is to control the pore structure in the copper foam that were made by this process by using the variation of sintering temperatures and particle sizes of carbonate.
The results show that the higher the temperature is used in sintering, the copper foam will have lower porosity as 71,748% and higher density as 2,531 gr/cm3 at 950_C for 2 hours. In addition, macrostructure and microstructure observation show that the higher the temperature is used in sintering and the smaller the particle size is used as the filler, the more opened cell pores are formed.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51509
UI - Skripsi Open  Universitas Indonesia Library
cover
Irwan
"Logam busa merupakan salah satu material yang sedang berkembang pada saat sekarang, karena memiliki beberapa kelebihan seperti rasio kekakuan dan berat yang baik, daya serap energi, serta daya redam getaran yang baik pula. Salah satu cara membuat logam busa adalah dengan Sintering and Dissolution Process (SDP). SDP ini melibatkan proses metalurgi serbuk terhadap campuran serbuk logam dan material pengisi.
Dalam penelitian ini menggunakan serbuk tembaga dan silika gel sebagai bahan baku pembuatan tembaga busa. Perbedaan perbandingan antara logam dengan silika gel menghasilkan jumlah pori-pori yang berbeda sehingga mempengaruhi sifat fisis dan mekanis yang berbeda. Variabel yang digunakan dalam penelitian ini adalah persentase berat 20%, 30%, 40%, dan 50% silika gel. Tiap variabel dikompaksi dengan tekanan 100 bar, lalu disinter pada temperatur 850_C selama 2 jam dan setelah itu dilakukan proses pelarutan silika gel dengan larutan asam Hydrofluoride (HF). Kemudian untuk mengetahui sifat fisis dan mekanis pada tiap tembaga busa diuji porositas, densitas, kekuatan tekan dan dilakukan pengamatan struktur makro dan mikro dengan menggunakan mikroskop optik dan Scanning Electron Microscope (SEM).
Hasil dari penelitian ini berupa tembaga busa yang mempunyai ukuran pori-pori sebesar 0,3 - 2,92 mm. Densitas tembaga busa yang paling tinggi yaitu 2,77 gr/cm3 pada tembaga busa dengan persentase berat 20% silika gel dan yang paling rendah yaitu 1,63 gr/cm 3 pada persentase berat 50% silika gel. Porositas tembaga busa yang paling tinggi yaitu 81,77% pada tembaga busa dengan persentase berat 50% silika gel dan yang paling rendah yaitu 68,95% pada persentase berat 20% silika gel. Pada hasil pengamatan morfologi tembaga busa busa menunjukkan bentuk pori - pori yang bulat, berjenis open cell dan memiliki jaringan koneksi antar pori. Hasil pengujian tekan menunjukkan bahwa tegangan dan regangan maksimum yaitu 95,51 MPa dan 21,56% terjadi pada persentase berat 30% silika gel.

Metallic foam is one of advanced the material recently developed, with some advantages, such as good stiff-to-weight ratio, energy absorption, and damping insulation. One of the methods in manufacturing metallic foams is by Sintering and Dissolution Process (SDP). SDP involves powder metallurgy process toward mixed powder of metal and filler material.
In this research, copper powder and silica gel was used as raw material for metal foam manufacturing. The ratio between metal and silica gel produced different amounts of pores that influenced their physical and mechanical properties. The ratio of silica gel used in this research was 20%, 30%, 40%, and 50%. Each ratio were compacted with 100 bar pressure, and sinterized in 850_C for 2 hours, and then the silica gel was dissolved by hydrofluoride acid solution. To investigate their physical and mechanical properties, on each copper were tested its porosity, density, compressive strength, then macro and micro structural analysis were conducted by optical microscope and Scanning Electron Microscope (SEM).
The result of this research were copper foams with pores ranging from 0.3 - 2.92 mm. The highest copper foam density was 2.77 gr/cm3 on 20% silica gel ratio, and the lowest was 1.63 gr/cm3 on 50% silica gel density. The highest copper foam porosity was 81,77% on 50% silica gel, and the lowest was 68,95% on 20% silica gel. The morphology observation of the copper foams showed sphere-like pores, open cell, and interconnected with each other. Compression test result showed that maximum stress and strain was 95.51 MPa and 21,56% on 30% silica gel.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51505
UI - Skripsi Open  Universitas Indonesia Library
cover
R. Ariosuko Dh
"Logam busa merupakan klas material relatif baru sejak dikenalkan di penghujung tahun 1990-an. Logam busa dapat difabrikasi dengan banyak cara, namun semuanya merupakan muara dari dua metode, yakni metode cair dan metode padat. Pembuatan dari bahan serbuk termasuk metode padat, sebagaimana digunakan di penelitian ini, dikombinasi dengan proses pelarutan bahan pengisi. Serbuk utama adalah Cu-15Zn (kuningan), dan bahan pembentuk pori yang digunakan adalah Potassium carbonate (K2CO3) dan Silica Gel (SiO2). Morfologi logam busa ini termasuk ukuran pori, dicoba dikontrol dengan variasi ukuran butir pengisi dan dua skema sinter.
Penelitian ini menggunakan 4 variabel ukuran bahan pengisi; 2,650 mm (SiO2 dengan fraksi massa 30%), serta 840, 542, dan 420 μm (K2CO3 dengan fraksi massa 60%). Setiap bakalan hasil pencampuran dikompaksi dengan tekanan 20 MPa (200 bar) selama 2,5 menit. Diikuti oleh dua skema proses sinter, yaitu 12 sampel dengan temperatur 900ºC selama 45 menit (skema S1) dan 12 sampel dengan skema 850ºC selama 1 jam (skema S2), dengan atmosfir gas nitrogen. Pengisi potassium carbonate dilarutkan dengan air hangat (~65ºC) selama 2 jam dengan cara diaduk secara magnetik, sedangkan pengisi silica gel direndam dalam larutan asam hidrofluorida (HF) dengan konsentrasi 25%.
Hasil karakterisasi produk logam busa; dihasilkan ukuran pori dengan rata-rata penyusutan 25%. Terbentuk berbagai jenis pori; pori terhubung (interkonek), pori tertutup, dan pori terbuka. Bentuk sel cenderung bulat mengikuti bentuk pengisi, terdiri dari jenis sel tertutup di sebagian permukaan dan jenis sel terbuka di sebagian besar permukaan. Densitas produk di kisaran ~1,3 g/cm³ untuk pengisi potasium semua ukuran dan ~1,73 g/cm³ untuk pengisi silica gel. Porositas di kisaran ~81% untuk pengisi potasium dan ~76% untuk pengisi silica gel. Dari dua skema sinter, semuanya menghasilkan fasa paduan Cu-15Zn. Konduktivitas listrik hasil skema sinter S1, tertinggi 1,93 [mΩ.m]^-1 pada sampel hasil pembentukan pengisi 0,542 mm, terendah 1,34 [mΩ.m]^-1 hasil pembentukan pengisi 0,841 mm.

Metal foam represents a new class of material, since introduced in the end year of 1990. Metal foam can be fabricated variously, but altogether have just 2 path, namely melt and solid fabrication. Fabrication from powder is one of solid fabrication band which is used in this research, joined with dissolution of filler substance. The main powders are Cu-15Zn, the fillers are potassium carbonates (K2CO3) and silica gel (SiO2). The morphology of porous including pore size tried to be controlled by variation of fillers diameter and sintering schemes.
Filler substances are classified into 4 particles size, those are 2.650 mm (30% mass fraction of SiO2) and 840 μm, 542 μm, and 420 μm (60% mass fraction of K2CO3). Each mixture was then compacted with same pressure of 20 MPa ( 200 bar), followed by two sintering schemes, those are 12 samples in 900ºC for 45 minutes (S1 and 12 others samples in 850ºC for 1 hour (S2). The dissolution process of potassium carbonates filler was undertaken in warm water (~65ºC) for 2 hours by magnetic stierring, and silica gel dissolved by soaking in hidrofluorida (HF) acid solution by 25% of concentration.
Macrostructure with cell shape tend to circular similar to the shape of fillers. Size shrinkage was observed about ~25% compare to initial filler size. Various pore morphology are formed in i.e. ; interconnected pore, closed pore, and open pore. The densities of metal foams were around ~1.3 g/cm³ for potassium carbonate fillers on all granular size and around ~1.73 g/cm³ for silica gel filler. Porosities were around ~81% for potassium carbonates fillers and ~76% for silica gel fillers. Almost all the samples have Cu-Zn alloys phase. It meant that the sintering schedule are suitable enough for alloying. The smallest electrical conductivity for sinter scheme S1, were 1.93 [mΩ.m]^-1 from filler size 0.542 mm. The largest were 1.34 [mΩ.m]^-1 from 0.841 mm filler size.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2009
T27086
UI - Tesis Open  Universitas Indonesia Library
cover
Almira Larasati
"Material biologis mampu luruh alami dikembangkan sebagai kandidat aplikasi perancah pembuluh darah untuk mencegah restenosis. Pada penelitian sebelumnya Fe-Mn-C berhasil dikembangkan dengan fasa austenit dan sifat mekanis yang baik. Namun laju degradasi dari material ini masih rendah untuk aplikasi perancah pembuluh darah. Fe-Mn-C berstruktur busa dikembangkan untuk memperbaiki laju degradasi pada paduan Fe-Mn-C. Kalium karbonat ditambahkan dengan Fe-Mn-C sebagai agen pembentuk busa yang diproduksi dengan metode fabrikasi metalurgi serbuk dengan variabel persen penambahan kalium karbonat (K2CO3) sebesar 5%, 10%, dan 15% dari jumlah total persen berat paduan Fe-Mn-C. Sinter dilakukan pada temperatur 850oC selama 3 jam yang kemudian dilanjutkan dengan sinter dekomposisi pada temperatur 1100oC selama 1,5 jam di atmosfer inert gas Nitrogen (N).
Hasil sinter dilakukan karakterisasi sifat fisik, kimia, mekanik, dan perilaku korosi. Paduan yang dihasilkan memilki kompoisisi Fe-30Mn-8C pada penambahan 5% K2CO3, Fe-27Mn-8,6C pada penambahan 10% K2CO3, dan Fe-27Mn-9,5C pada penambahan 15% K2CO3. Fasa yang terbentuk adalah fasa austenit, fasa mangan oksida, dan fasa grafit. Kekerasan paduan mencapai hingga 271,53 VH pada paduan dengan penambahan 15% K2CO3. Laju korosi semakin meningkat hingga 5,1 mm/tahun seiring dengan porositas yang semakin meningkat karena adanya penambahan persen K2CO3.

Degradable biomaterial has been developed for coronary stent application to prevent restenosis. Fe-Mn-C was developed with fully austenite phase and good mechanical properties. But degradation rate of Fe-Mn-C still relatively low for coronary stent application. In this study, Fe-Mn-C foam has been developed to improve degradation rate on Fe-Mn-C alloy by addition of potassium carbonate as foaming agent to create porosity. Variable used in this experiment was the percentage of potasium carbonate (K2CO3) 5%, 10%, and 15% from the total weight percent of Fe-Mn-C powder. Sintering process was done in inert gas nitrogen (N) at temperature of 850oC for 3 hours and continued at 1100oC for 1,5 to decompose K2CO3. Several characterization was performed on samples such as physical, chemical, and mechanical properties also degradation behaviour of samples.
The results showed that materials formed Fe-30Mn-8C in 5% of K2CO3 addition, Fe-27Mn-8,6C in 10% K2CO3 addition, and Fe-27Mn-9,5C in 15% K2CO3 addition. Phase and microstructure formed austenite, manganese oxide, and graphite phase. Hardness value in each alloying increased up to 271,53 VH in 15% K2CO3 addition. Corrosion rate increased up to 6,05 mmpy along with the increasing porosity in materials as the results of K2CO3 addition.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2014
S53864
UI - Skripsi Membership  Universitas Indonesia Library
cover
Avencia Yemima Harvena
"Peningkatan konsentrasi karbon dioksida (CO2) di atmosfer meningkatkan penyerapan panas dan memancarkan panas, sehingga membuat bumi menjadi lebih hangat. Untuk mengurangi dampak CO2, dilakukan usaha-usaha untuk konversi CO2 menjadi bahan bakar atau bahan baku kimia yang lebih bermanfaat. Konversi CO2 menjadi bahan bakar dan bahan kimia dengan metode elektrokimia dianggap menjanjikan karena elektroreduksi CO2 dapat dilakukan pada tekanan dan suhu atmosfer sehingga ideal untuk diaplikasikan dalam skala besar. Tembaga merupakan salah satu logam yang dapat mengkatalisis reduksi CO2 secara elektrokimia menjadi berbagai produk seperti CO, metana, asam format, etanol, etilena dan hidrokarbon yang lebih tinggi. Aktivitas dan selektivitas busa tembaga diharapkan dapat meningkat dengan memodifikasi busa tembaga menggunakan metal organic framework (MOF) untuk memperoleh luas permukaan aktif elektroda yang lebih besar serta menurunkan perbedaan energi antara CO2 dan intermedietnya sehingga proses elektroreduksi CO2 dapat berlangsung lebih efektif. Pada penelitian ini, dilakukan modifikasi elektroda busa tembaga dengan Cu-MOF-74 menggunakan metode solvotermal. Karakterisasi dengan menggunakan X-Ray Diffraction (XRD) mengonfirmasi keberhasilan sintesis Cu-MOF-74 di atas permukaan busa tembaga. Selain itu, hasil karakterisasi Scanning Electron Microscope-Energy-Dispersive X-Ray (SEM-EDX) juga mengkonfirmasi adanya Cu-MOF-74 pada permukaan busa tembaga dengan diameter pori 27,1 mm.Selanjutnya dilakukan reduksi elektrokimia CO2 menggunakan sistem flow cell dengan laju alir elektrolit 75 mL/menit dan potensial -1,3 V; -1,5 V; -1,7 V; dan -1,9 V (vs Ag/AgCl). Efisiensi Faraday dihitung dari produk utama (asam format dan hidrogen) dengan menggunakan elektroda Cu@Cu-MOF-74, diperoleh EF sebesar 72,30% untuk asam format dan 68,57% untuk hidrogen, lebih tinggi apabila dibandingkan dengan elektroda busa tembaga yang memperoleh nilai efisiensi Faraday asam format tertinggi sebesar 56,29% dan 63,63% untuk hidrogen.

Carbon dioxide (CO2) is a greenhouse gas that absorbs and emits heat, which also warms the earth. To reduce these negative impacts, it is necessary to convert CO2 into fuel or chemical raw materials that are more useful. The conversion of CO2 into fuels and chemicals by the electrochemical method is considered promising because the electroreduction of CO2 can be carried out at atmospheric pressure and temperature making it ideal for large-scale applications. Copper foam is a metal that can catalyze the electrochemical reduction of CO2 into various products such as CO, methane, formic acid, ethanol, ethylene and higher carbon. The activity and selectivity of copper foam is expected to increase by modifying the copper foam using a metal organic framework (MOF) to obtain a larger active electrode surface area and reduce the energy difference between CO2 and its intermediary so that the CO2 electroreduction process can take place more effectively. In this study, modification of copper foam electrodes will be carried out using the Cu-MOF-74 with solvothermal method. The physical characterization of the electrode using X-Ray Diffraction (XRD) confirmed that Cu MOF-74 has been successfully synthesized on the surface of copper foam. In addition, the results of the Scanning Electron Microscope-Energy-Dispersive X-Ray (SEM-EDX) characterization also confirmed the presence of Cu-MOF-74 on the surface of copper foam with a pore diameter of 27,1 mm. Furthermore, electrochemical reduction of CO2 was carried out using a flow cell system with a flow rate of 75 mL/minute and a potential of -1.3 V; -1.5V; -1.7V; and -1.9 V (vs Ag/AgCl). Faraday efficiency was calculated from the main products (formic acid and hydrogen) using Cu@Cu-MOF-74 electrodes, obtained an EF of 72.30% for formic acid and 68.57% for hydrogen, higher when compared to copper foam electrodes which obtained the highest Faraday efficiency values for formic acid of 56.29% and 63.63% for hydrogen."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zelayna Claudia
"Dalam penelitian ini pengamatan berfokus pada penyelidikan peran ozone pada penyisihan tembaga (Cu) dari air limbah dengan adsorpsi menggunakan kitosan. Kitin adalah salah satu polisakarida alami yang paling melimpah yang dihasilkan oleh banyak organisme hidup, biasanya ditemukan sebagai komponen krustasean, setelah menjalani isolasi tertentu kitin dapat berubah menjadi kitosan (β-Poly (1-4) - 2-Amino-2-deoksi-ß-D-Glucan) yang memiliki sifat kimia yang lebih baik yang diperlukan sebagai bioadsorben. Pemisahan tembaga dari limbah cair menggunakan metode flotasi dan ozon sebagai diffuser, penggunaan ozon dikarenakan sifat oksidasi dan kelarutannya dalam air lebih besar dari udara. Selain itu, proses penyisihan tembaga yang dilakukan dibagi menjadi tiga variasi utama; ozonasi, kitosan dan gabungan kitosan dan ozon, dengan konsistensi kitosan; 1g/L, 2g/L dan 3 g/L. dan variasi konsentrasi tembaga pada 100 ppm, 200ppm, 300ppm dan 400 ppm. Hasil penelitian menunjukkan bahwa prosentase penyisihan tembaga dalam proses ozonisasi dan kitosan masing-masing hanya mencapai titik tertinggi pada 14,15% dan 44,58%, dimana kombinasi kedua metode mencapai 51,42%.

In this study the observation were mainly focus on the investigation of the significance of the copper (Cu) removal from wastewater by adsorption using chitosan and ozonation process. Furthermore, chitin is one of the most abundant natural polysaccharides produced by many living organisms; it is usually found as a component of crustacean shell, after undergoing specific isolations process chitin can be transform into the chitosan (β Poly-(1-4)-2-Amino-2-deoxy-ß-D- Glucan) which has a better chemical properties which necessary as a bioadsorbent Furthermore, separation of copper from wastewater was conducted by flotation method, ozone is used as diffuser because it is a stronger oxidant and more dissolvable in water than oxygen. Moreover, the process of the copper removal that is carried out is using a varied of ozone, chitosan and ozon-chitosan process, with the variation of chitosan used consitency at 1g/L, 2g/L and 3 g/L. and the variation of copper concentration at 100 ppm, 200ppm, 300ppm and 400 pm. The results indicated that the precentage removal of copper in ozonation process only and chitosan only reach its highest point at 14.15% and 44.58% respectivelly, where the combination of both method reach 51.42%."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47713
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Effendi
"Salah satu material yang sedang berkembang pada saat sekarang adalah logam busa. Logam busa memiliki ciri-ciri fisik yaitu memiliki pori-pori disetiap sisi logam. Logam ini sekarang memiliki potensial yang besar dalam aplikasi otomotif, konstruksi, dan industri kimia karena memiliki beberapa sifat mekanis yang baik diantaranya daya serap energi yang tinggi, memiliki berat yang ringan, dan kekakuan spesifik yang tinggi. Pembuatan logam busa dapat dilakukan dengan beberapa metode. Salah satunya adalah dengan proses sinter dan pelarutan garam (Sintering and Dissolution Process) dengan metode metalurgi serbuk konvensional.
Penelitian yang dilakukan menggunakan serbuk aluminium dengan garam NaCl. Variabel yang digunakan adalah fraksi berat garam dengan nilai 0%, 30%, 50%, 70%, dan 90%. Perbedaan variabel ini akan menghasilkan jumlah pori yang berbeda dan sifat mekanis yang berbeda. Dalam proses pembuatan, serbuk-serbuk tersebut dicampur hingga merata kemudian dikompaksi dengan tekanan 250 bar dan disinter pada temperatur 670°C selama 2 jam. Setelah itu dilakukan pelarutan garam dengan menggunakan air pada temperatur ±65°C selama kurang lebih 2 jam. Untuk mengetahui karakteristik dan sifat mekanis logam busa dilakukan pengujian kuat tekan, pengujian densitas dan porositas, serta pengamatan struktur makro dan mikro (dengan SEM).
Hasil yang didapat pada penelitian ini bahwa pori-pori yang dihasilkan pada aluminium busa sebesar 45,92-350,80 µm dengan persentase porositas yang dihasilkan sebesar 16,71% pada 0% garam hingga 91,70% pada 90% garam. Densitas tertinggi didapat pada 0% garam sebesar 2,25 gram/cm3 sedangkan densitas terendah didapat pada 90% garam sebesar 0,22 gram/cm3. Hasil pengujian kuat tekan menunjukkan dengan meningkatnya porositas (penurunan tegangan tekan) maka energi yang diserap lebih tinggi dan kurva uji tekan semakin landai. Hasil pengamatan mikrostruktur dengan SEM menunjukkan besar pori yang terdistribusi secara merata pada fraksi garam 50%, 70%, dan 90% dengan bentuk pori yang tidak beraturan.

Metallic foam is one of advanced the material recently developed. It has a physical pores cells on every single side material. Metallic foams have great potential for wide applications in the transportation, construction and chemical industries because of their good mechanical properties like heavy energy absorbers, their lightweight, and high specific strength and stiffness. There are some methods in manufacturing metallic foams. Sintering and Dissolution Process (SDP) is one of the methods of conventional powder metallurgy route to produce metallic foam.
This experiment used a powder aluminium and sodium chloride as raw materials. Sodium chloride used as variable ratio with the specific amounts are 0%, 30%, 50%, 70%, and 90%. The difference of variables will produce the differences amounts of porosity and physical properties. The mixture of Al/NaCl powders were compacted at 250 bar, and then sintered at 670°C for 2 hours. And then sodium chloride was removed by dissolution process in warm water for around 2 hours. To investigate the characteristics and the mechanical properties, aluminium foam were tested its compressive strength, percentage of porosity and density, and macrostructure and microstructure analysis by using Scanning Electron Microscope (SEM).
The results of this experiment shows that the pore size of aluminium foam were in the range of 45,92-350,80 µm and the percentage of porosity were 16,71% on 0 wt% NaCl until 91,70% on 90 wt% NaCl. The highest density on 0 wt% was 2,25 gram/cm3 and the lowest density on 90 wt% was 0,22 gram/cm3. In compressive strength behaviour performs in increasing the porosity (decreasing compressive stress), the capability in absorbing the energy increased and the curve of stressstrain becomes slope gently. In microstructure analysis by SEM performs the pore cells distributed spread flat on fraction 50%, 70%, and 90% within the morphology of pores irregular.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41760
UI - Skripsi Open  Universitas Indonesia Library
cover
Dharmanto
"Proses atomisasi logam biasanya menghasilkan serbuk dengan butiran partikel berukuran lebih dari 200 μm, berbentuk tidak teratur. Selain itu, saat ini diperlukan juga serbuk logam dengan densitas rendah untuk aplikasi PM, supaya menghasilkan modulus elastisitas rendah. Hal tersebut dikarenakan adanya masalah modulus elastisitas logam jauh lebih besar daripada modulus elastisitas tulang alami (10 hingga 30 GPa) mendekati modulus elastisitas tulang alami. Melihat masalah tersebut maka dibutuhkan reaktor fabrikasi serbuk logam yang tepat, yang mampu untuk memproduksi serbuk logam dengan butiran partikel berbentuk bulat berpori berukuran kurang dari 200 μm dan berbiaya rendah. Maka pada penelitian ini, sebuah alat atomisasi plasma berbiaya rendah dirancang dan dibuat sebagai solusi untuk masalah biaya tinggi, masalah bentuk yang tidak beraturan pada hasil atomisasi plasma, dan masalah modulus elastisitas logam jauh lebih besar daripada modulus elastisitas tulang alami. Kemudian dibuat atomisasi plasma dengan daya sumber energi kurang dari 7 kVA. Prototipe mesin atomisasi telah berhasil dibuat dapat memproduksi serbuk logam dengan butiran partikel berbentuk bulat berpori dengan ukuran <200 μm dengan teknologi plasma berbiaya rendah. Prototipe mesin atomisasi plasma memiliki chamber dengan ukuran diameter 500 mm dengan tinggi 1000 mm, yang dilengkapi dengan dua buah siklon, dua buah scrubber basah, dua buah saringan dan kompresor. Pembangkit plasma memiliki tegangan keluaran rata-rata kurang lebih 102 volt, dengan arus yang dapat diatur dari 20 A sampai dengan 60 A. Pada variasi kecepatan umpan 2 mm3/detik, 3 mm3/detik, dan 4 mm3/detik pada ukuran serbuk <200μm masing masing adalah 4.90%, 5.20%, dan 5.35%, dimungkinkan tidak berpengaruh signifikan terhadap hasil jumlah serbuk ukuran <200μm. Dimana pencapaian jumlah hasil ukuran serbuk <200μm dibagi dengan jumlah seluruh hasil produksi (Yield Rasio) masing masing adalah 5.15%, 5.48%, dan 5.65%. Jumlah serbuk tertinggi dihasilkan dari variasi arus 35 A, diikuti dengan arus 30 A dan 25 A, yaitu masing masing adalah 18.30%, 14.30%, dan 11.35%. Hal tersebut menunjukkan bahwa semakin tinggi arus yang digunakan maka akan menghasilkan serbuk dengan ukuran <200 μm semakin banyak. Dimana pencapaian jumlah hasil ukuran serbuk <200μm dibagi dengan jumlah seluruh hasil produksi (Yield Rasio) masing masing berurutan adalah 22.49%, 16.69%, dan 12.80%. Jumlah serbuk pada ukuran partikel <200 μm untuk tekanan 1.5 bar, tekanan 2.0 bar, dan tekanan 2.5 bar masing-masing adalah 8.05%, 23.60%, dan 17.50%. Ada kemungkinan bahwa ini bisa terjadi karena untuk memecah logam cair menjadi tetesan butiran ukuran yang lebih kecil, diperlukan energi kinetik dari tekanan gas yang lebih besar. Sehingga tekanan gas yang besar dapat menghasilkan ukuran partikel yang lebih kecil dibandingkan dengan tekanan gas yang kecil. Sedangkan pada tekanan 2.5 bar terjadi penurunan jumlah pada ukuran serbuk <200 μm, hal tersebut dimungkinkan karena pada tekanan 2.5 bar terjadi menurunkan lama waktu kontak lelehan logam pada nosel atau panas yang kontak dengan lelehan logam berkurang. Hasil serbuk dari desain baru atomisasi conduit plasma telah dianalisis menggunakan desain eksperimen untuk mendapatkan nilai optimal dari distribusi ukuran partikel serbuk logam. Optimalisasi parameter terbaik untuk mendapatkan distribusi ukuran partikel minimum dalam serbuk logam. Nilai minimum dalam hasil distribusi ukuran partikel D10, D50, dan D90 dari optimasi adalah 71 μm, 325 μm, dan 534 μm, dan nilainya dapat dicapai dengan menggabungkan parameter arus dan faktor tekanan 45 A dan 2.5 bar. Hasil persamaan regresi dapat digunakan sebagai referensi dalam pengoperasian alat atomisasi plasma saluran dalam memperoleh distribusi ukuran partikel tertentu yang dibutuhkan. Porositas serbuk logam dari hasil atomisasi plasma desain baru telah dianalisis menggunakan desain eksperimen. Analisis desain eksperimen untuk mendapatkan nilai porositas serbuk logam yang optimal. Variasi arus 45 A memiliki jumlah porositas yang lebih kecil dibandingkan dengan jumlah porositas pada variasi arus 40 A atau 35 A. Permukaan partikel serbuk pada variasi 45 A memiliki permukaan yang lebih halus dibandingkan permukaan partikel serbuk. dengan variasi 40 A dan 35 A. Serbuk logam dari hasil arus 45 A memiliki bentuk bulat yang lebih sempurna dibandingkan arus 40 A atau 35 A. Alat atomisasi conduit plasma dengan diameter lubang conduit 4 mm dan panjang 100 mm, jika digunakan untuk menghasilkan Ti Alloy maka arus yang disarankan adalah diatas 45 A dengan tegangan 102 V. Penelitian ini telah berhasil membuat bahan baku logam ringan densitas 4.11 ±0.32 g/cm3 dengan modulus elastisitas kompresi didapat rata-rata 11.05 ±2.9 GPa dari bahan serbuk stainless steel sebagai salah satu contoh aplikasi produk akhir dari hasil serbuk atomisasi plasma.

The metal atomization process usually produces powders with particles of more than 200 m in size, irregular in shape. In addition, currently also required metal powders with low density for PM applications in order to produce a low modulus of elasticity, because the modulus of elasticity of metal is much larger than the modulus of elasticity of natural bone (10 to 30 GPa), approaching the modulus of elasticity of natural bone. Seeing these problems, we need an appropriate metal powder fabrication reactor, which is capable of producing metal powders with spherical, porous particles measuring less than 200 m and low cost. So in this study, a low-cost plasma atomizer is designed and manufactured as a solution to the problem of high cost, the problem of irregular shape in the plasma atomization result, and the problem of the modulus of elasticity of metals being much larger than the modulus of elasticity of natural bone. Then made atomization plasma with an energy source of less than 7 kVA. The atomization machine prototype has been successfully manufactured to produce metal powders with spherical porous particles of <200 m in size using low-cost plasma technology. The plasma atomizer prototype has a chamber with a diameter of 500 mm and a height of 1000 mm, which is equipped with two cyclones, two wet scrubbers, two filters, and a compressor. The plasma generator has an average output voltage of approximately 102 volts, with a current that can adjust from 20 A to 60 A. The raw material is in the form of a wire with a diameter of 1.6 mm. The feed speed variation of 2 mm3/second, 3 mm3/second, and 4 mm3/second at powder size <200μm, which are 4.90%, 5.20%, and 5.35% respectively, it is possible that it has no significant effect on the yield of powder size <200μm. The total yield of powder size <200μm divided by the total yield (Yield Ratio) is 5.15%, 5.48%, and 5.65%, respectively. The highest amount of powder was produced from the variation of the current 35 A, followed by the current 30 A and 25 A, which were 18.30%, 14.30%, and 11.35%, respectively. This shows that the higher the current, the more powders with a size of <200 m will be produced. Where the achievement of the total yield of powder size <200μm divided by the total number of production results (Yield Ratio), respectively, were 22.49%, 16.69%, and 12.80%, respectively. The pressure variation of 1.5 bar pressure, 2.0 bar pressure, and 2.5 bar pressure at powder size <200 μm were 8.05%, 23.60%, and 17.50%, respectively. It is possible that this could happen because to break the molten metal into smaller droplets, needs the kinetic energy of the gas pressure is greater so that large gas pressure can produce a smaller particle size compared to small gas pressure. While at a pressure of 2.5 bar there is a decrease in the amount of powder size <200 m, this is possible because, at a pressure of 2.5 bar, there is a decrease in the contact time of the molten metal on the nozzle or the heat in contact with the molten metal decreases.. The powder yield from the new design of the channel plasma atomization has been analyzed using the experimental design to obtain the optimal value of the metal powder particle size distribution. Optimization of the best parameters to obtain the minimum particle size distribution in metal powders. The minimum values in the D10, D50, and D90 particle size distribution results from the optimization are 71 μm, 325 μm, and 534 μm, and these values can be achieved by combining current parameters and pressure factors of 45 A and 2.5 bar. The results of the regression equation can be used as a reference in the operation of the channel plasma atomizer in obtaining the required particle size distribution. The porosity of the metal powder from the plasma atomization of the new design was analyzed using a design of experimental. The design of experimental analysis to obtain optimal porosity values for metal powders. The current variation of 45 A has a smaller amount of porosity than the amount of porosity at the current variation of 40 A or 35 A. The surface of the powder particles in the 45 A variation has a smoother surface than the surface of the powder particles. With variations of 40 A and 35 A. The metal powder of current 45A has a more perfect spherical shape than the current 40 A or 35 A. A conduit plasma atomizer with a conduit hole diameter of 4 mm and a length of 100 mm, if used to produce Ti Alloy, the recommended current is above 45 A with a voltage of 102 V. This research was succeeded in making light metal raw materials with a density of 4.11 ±0.32 g/cm3 with an elastic modulus of compression obtained an average of 11.05 ±2.9 GPa from stainless steel powder as an example of the application of the final product from plasma atomization powder."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Indro Baskoro
"Logam busa dalam dekade terakhir ini mulai menjadi perhatian bagi para peneliti dan industri otomotif. Hal ini karena logam busa memiliki rasio kekakuan dan berat yang baik, daya serap energi, serta daya redam getaran yang baik pula. Sifat ini didapatkan dari pori yang ada pada logam busa tersebut. Salah satu cara membuat logam busa adalah dengan Sintering and Disolution Process (SDP). SDP ini melibatkan proses metalurgi serbuk terhadap campuran serbuk logam dan garam yang digunakan. Hasil dari proses metalurgi serbuk kemudian dilakukan pelarutan garam, sehingga terbentuk pori.
Tujuan penelitian ini adalah untuk mendapatkan gambaran mengenai kondisi optimum proses SDP untuk logam Al-4Cu (1,73 %at), serta mengetahui karakteristik dari logam busa yang dihasilkan. Penelitian ini menggunakan material Al-4Cu (1,73 %at) dan garam NaCl. Penelitian ini menggunakan variabel fraksi berat garam 0%, 10%, 30%, 50%, 70%, dan 90%. Campuran tersebut diproses metalurgi serbuk dengan tekanan kompaksi 300 Bar dan temperatur sinter 660_C selama 120 menit. Kemudian sampel direndam dalam air hangat selama 120 menit untuk melarutkan garam NaCl.
Sampel hasil pelarutan dilakukan pengujian densitas dan porositas, kuat tekan, mikrostruktur serta SEM untuk mengetahui karakteristiknya. Logam busa hasil penelitian memiliki karakteristik, densitas tertinggi 1,59gr/cm3 (densitas relatif 0.57 gr/cm3) didapat dari campuran 10% garam dan terendah 0,7 gr/cm3 (densitas relatif 0.25 gr/cm3) dari campuran 70% garam. Porositas tertinggi 74,8 didapat dari campuran 70% garam, terendah 42,81% dari campuran 10% garam.
Pada pengujian kuat tekan, nilai tertinggi adalah dimiliki campuran 10% dengan 30,946 MPa, terendah 0,293 Mpa dimiliki campuran 70%. Pada kurva kuat tekan, dengan semakin tinggi persentase porositas, kemampuan logam busa untuk menyerap energi akan semakin baik. Pengamatan struktur mikro dan SEM didapatkan bahwa morfologi pori yang terbentuk mengikuti morfologi garam NaCl yang dipakai, yaitu berbentuk kubik dengan ukuran dalam rentang 66,67 - 866,67 _m. Namun dari parameter proses yang digunakan masih belum optimal. Salah satunya adalah temperatur sinter. Pada temperatur 660_C Al cair akan keluar membentuk tetesan (droplet). Hal tersebut menandakan bahwa temperatur sinter terlalu tinggi.

In the last decade metallic foam became the attention for researcher and automotive industry. It is caused by its good stiff-to-weight ratio, energy absorption, and damping insulation. These properties are the results of its pores all over the materials. The manufacturing of metallic foam could be carried by Sintering and Dissolution Process (SDP). SDP involve powder metallurgy process toward mixed powder of metal and salt. Then the precursor is carried away in the dissolution process in order to create pore structure.
The aim of this experiment is to describe the optimum conditions of SDP in producing Al-4Cu (1,73 %at) foam, and to observe about the characteristic of metallic foam. Al-4Cu (1,73 %at) powder and sodium chloride used as a raw material in this experiment. The variable used are 0%, 10%, 30%, 50%, 70%, and 90% wt% of salt. The mixed powder then compacted for 300 Bar, and sintered at 660_C for 120 minutes. The burn compact then submerged in the hot-stream water for 120 minutes to remove the sodium chloride.
To investigate physical and mechanical properties of Al-4Cu (1,73 %at) foams, their density, porosity, compressing behavior, and microstructure were tested, by optical microscopy and Scanning Electron Microscopy (SEM). For metallic foam the highest density (1,59gr/cm3) was obtained by 10 wt% NaCl, while the lowest (0,7gr/cm3) was obtained by 70 wt% NaCl. 74,8% was the highest porosity obtained by 70 wt% NaCl and the lowest one was obtained by 10 wt% NaCl. The highest compression strength 30,946 MPa was obtained by 10 wt% NaCl, while the lowest 0,293 MPa was obtained by 70 wt% NaCl.
From the compressing behavior, it was indicated that with increasing amount of pore, the capability of metallic foam to absorb the energy increased. Meanwhile, it was found in the microstructure, that the cell morphology of the final Al foam closely matched those of the NaCl particles. Which is cubic-shaped with the size range of 66,67 - 866,67 _m. But, from the parameters used in the powder metallurgy process are still not optimum yet. The sintering temperature used in this experiment was still exceedingly the optimum temperature. At 660_C liquid Al will ooze out of the surface of the compacts in the form of globules.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2007
S41738
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>