Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 14623 dokumen yang sesuai dengan query
cover
Nasrullah
"Resolusi koreferensi merupakan salah satu tugas dalam ekstraksi informasi yang bertujuan untuk mengenali hubungan identitas antar frase-frase yang terdapat pada teks dokumen. Pasangan frase yang memiliki hubungan identitas memiliki arti bahwa pasangan frase tersebut merujuk kepada entitas yang sama. Penelitian ini bertujuan untuk melihat sejauh mana metode association rules dapat digunakan pada resolusi koreferensi. Sistem resolusi koreferensi dikembangkan dengan pendekatan machine learning. Metode machine learning yang diterapkan pada sistem adalah association rules. Association rules untuk resolusi koreferensi dalam penelitian ini dibuat berdasarkan informasi kelas kata, kelas nama, kesamaan karakter penyusun frase, serta letak atau posisinya dalam dokumen. Sistem diimplementasikan menggunakan bahasa pemrograman Java. Hasil uji coba menunjukkan bahwa metode association rules dapat digunakan untuk menyelesaikan tugas resolusi koreferensi. Uji coba dilakukan pada artikel-artikel media massa online dari Republika dan dapat diperoleh F-measure hingga 79,68%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2005
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Budiono Wibowo, supervisor
"Penelitian ini mengembangkan sistem pengenalan entitas bernama pada teks dokumen berbahasa Indonesia menggunakan pendekatan machine learning. Metode dalam machine learning yang digunakan adalah association rules. Entitas yang dikenali pada penelitian ini adalah entitas nama orang, nama organisasi dan nama lokasi. Aturan-aturan untuk mengenali suatu entitas dibuat berdasarkan informasi morfologi dan kelas kata yang digunakan sebagai fitur term/token yang ingin dikenali. Suatu term dapat mempunyai satu fitur (fitur tunggal) atau banyak fitur (fitur berganda). Fitur berganda dapat dibuat berdasarkan informasi morfologi, informasi kelas kata dan gabungan keduanya. Uji coba sistem dilakukan pada beberapa kombinasi penggunaan informasi morfologi dan kelas kata dalam aturan. Hasil uji coba menunjukkan bahwa sistem dapat melakukan pengenalan entitas bernama dengan F-measure tertinggi sebesar 79.39%. Hasil ini diperoleh dengan aturan pengenalan entitas bernama yang dibuat berdasarkan gabungan informasi morfologi dan kelas kata."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2005
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Fatkhul Amin
"Event Extraction merupakan salah satu tugas dalam sistem ekstraksi informasi yang bertujuan untuk menemukan kumpulan informasi event dari suatu dokumen. Informasi tersebut dapat berupa informasi pihak-pihak yang terlibat, tempat kejadian, waktu, dan segala informasi yang terkait dengan event. Penelitian ini bertujuan untuk melakukan proses ekstraksi event (event pertemuan) pada teks berbahasa Indonesia. Dari event pertemuan tersebut, informasi yang dicari adalah informasi pihak yang terlibat (person), tempat (location), serta waktu (time) terjadinya event. Ekstraksi dilakukan dengan menggunakan pendekatan machine learning. Sedangkan metode machine learning yang digunakan adalah association rules, decision tree, dan neural networks. Penelitian bertujuan untuk melihat perbandingan kinerja ketiga metode tersebut terhadap ekstraksi event. Uji coba dilakukan pada artikel-artikel media massa online dari Kompas, Jawa Pos, Republika, dan Sinar Harapan. Pada ekstraksi event, diketahui bahwa metode decision tree menunjukkan kinerja yang lebih baik dibandingkan metode association rules dan metode neural networks dengan F-measure mencapai 83,95%. Metode association rules menunjukkan kinerja yang lebih baik dibandingkan dengan metode neural networks dengan F-measure masing-masing sebesar 82,41% dan 81,57%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2006
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Prajna Wira Basnur
"Klasifikasi dokumen adalah sebuah metode untuk menentukan suatu dokumen termasuk ke suatu kategori secara otomatis berdasarkan isi dokumen. Metode Naïve Bayes dan ontologi merupakan metode klasifikasi dokumen teks yang digunakan dalam penelitian ini. Data yang digunakan dalam penelitian ini berupa artikel berita berbahasa Indonesia dari situs http://www.kompas.com. Dalam penelitian ini menggunakan lima kategori dalam domain olahraga untuk melakukan klasifikasi dokumen, yaitu kategori bulutangkis, basket, otomotif, sepakbola, dan tenis. Klasifikasi dokumen dengan menggunakan ontologi dilakukan dengan membandingkan nilai kemiripan diantara dokumen dan sebuah node yang ada di ontologi. Sebuah dokumen diklasifikasikan ke sebuah kategori atau node, jika memiliki nilai kemiripan paling tinggi diantara semua node yang ada di ontologi. Hasil penelitian menunjukkan bahwa ontologi dapat digunakan untuk melakukan klasifikasi dokumen. Nilai recall, precision, dan f-measure untuk klasifikasi dokumen menggunakan ontologi berturut-turut adalah 97.03%, 91.63%, dan 94.02%.

Document classification is a method for determine document category automatically based on contents of document. In this research, we use Naïve Bayes and Ontology method for document classification. Mass media in Bahasa Indonesia is used as data in this research. Data is taken from http//www.kompas.com. We uses five category in sports domain for document classification that comprise with bulutangkis, basketball, automotive, soccer, and tennis category. Document classification uses ontology can be done with compare similarity value between document and a node in ontology. A document can classified to a category or node, if a document has highest similarity value between all node in ontology. In this research indicate that ontology can used for document classification. Recall, precision, and f-measure value for document classification using ontology in a row are 97.03%, 91.63%, and 94.02%."
2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Nofa Aulia
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
T51811
UI - Tesis Membership  Universitas Indonesia Library
cover
Adi Yudho Wijayanto
"Tujuan utama penggunaan peralatan Pressure Relief Device (PRD) adalah untuk memastikan keamanan bejana tekan dalam sistem bertekanan. Seiring berjalannya waktu, peralatan PRD dapat mengalami penurunan kualitas dan gagal menjalankan fungsi yang diharapkan, sehingga harus diidentifikasi sebagai mode kegagalan. Untuk memitigasi potensi risiko yang terkait dengan hal ini, direkomendasikan agar pendekatan seperti inspeksi berbasis risiko (RBI) diterapkan. Meskipun RBI telah diadopsi secara luas, metode ini bergantung pada teknik kualitatif, sehingga menyebabkan variasi yang signifikan dalam penilaian risiko peralatan. Studi ini mengusulkan metode analisis risiko baru yang menggunakan pembelajaran mesin berbasis pembelajaran mendalam untuk mengembangkan model penilaian risiko untuk peralatan PRD terkait dengan mode kegagalan failure on leakage. Pendekatan inovatif ini akan mengurangi waktu penilaian, meningkatkan akurasi, dan menurunkan biaya pemrosesan dengan memberikan hasil penghitungan yang tepat. Penelitian ini mengembangkan program prediksi risiko yang menggunakan pembelajaran mesin berbasis deep learning yang dirancang secara eksplisit untuk mode kegagalan failure on leakage pada peralatan pelepas tekanan. Dataset yang digunakan dalam proses pengembangan model mengikuti standar API 581 dan berisi 168 dataset. Berbagai parameter model digunakan, antara lain test size 20%, nilai random state 0, 150 epoch, learning rate 0,001, dan 3 layers dengan nilai dense 128, 64, dan 32. Performa model dievaluasi menggunakan validation confusion matrix, yang menunjukkan akurasi 94%.

The primary objective of deploying Pressure Relief Device (PRD) equipment is to ensure the safety of pressure vessels within a pressurized system. Over time, PRD equipment may degrade and fail to perform its intended function, which must be identified as a failure mode. To mitigate potential risks associated with this, it is recommended that an approach such as risk-based inspection (RBI) be implemented. Despite the widespread adoption of RBI, the method relies on qualitative techniques, leading to significant variations in equipment risk assessments. This study proposes a novel risk analysis method that uses deep learning-based machine learning to develop a risk assessment model for PRD equipment related to the fail-on-leakage failure mode. This innovative approach will reduce assessment times, improve accuracy, and lower processing costs by providing precise calculation results. The research develops a risk prediction program that uses deep learning-based machine learning designed explicitly for failure-on-leakage failure mode in pressure relief equipment. The dataset used in the model development process adheres to API 581 standards and comprises 168 data points. Various model parameters are employed, including a test size of 20%, a random state value of 0, 150 epochs, a learning rate of 0.001, and 3 layers with dense values of 128, 64, and 32. The model's performance is evaluated using a validation confusion matrix, which indicates an accuracy of 94%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mohammad Darrel Tristan Budiroso
"Penelitian ini menangani masalah pengenalan emosi dalam percakapan berbahasa Indonesia, yang penting untuk aplikasi seperti pengenalan ucapan, interaksi manusiamesin, dan analisis sentimen. Untuk mengatasi kompleksitas data suara dan teks, penelitian ini menggabungkan Word Embedding (Word2Vec) dan spektrum suara (MFCC) menggunakan Convolutional Neural Network (CNN). Word2Vec mengubah dataset suara menjadi representasi teks vektor, sementara MFCC digunakan untuk ekstraksi fitur dari spektrum suara. Model yang dikembangkan dievaluasi dengan dataset percobaan berbahasa Indonesia, dan pendekatan Weighted Average Ensemble yang mengintegrasikan kedua metode ini mencapai akurasi 70%. Hasil ini menunjukkan bahwa integrasi teknologi Word Embedding dan analisis spektrum suara dapat meningkatkan akurasi pengenalan emosi dalam bahasa Indonesia. Penelitian ini berkontribusi signifikan terhadap teknologi pengenalan emosi dan berpotensi meningkatkan interaksi manusia dengan teknologi serta aplikasi dalam analisis sentimen dan pengolahan bahasa alami.

This research addresses the issue of emotion recognition in Indonesian language conversations, which is crucial for applications such as speech recognition, humanmachine interaction, and sentiment analysis. To tackle the complexity of voice and text data, this study combines Word Embedding (Word2Vec) and sound spectrum analysis (MFCC) using Convolutional Neural Network (CNN). Word2Vec is used to convert voice datasets into vector text representations, while MFCC is employed for feature extraction from the sound spectrum. The developed models were evaluated using an experimental dataset in Indonesian, and the Weighted Average Ensemble approach, which integrates both methods, achieved an accuracy of 70%. These results indicate that integrating Word Embedding technology and sound spectrum analysis can significantly enhance the accuracy of emotion recognition in Indonesian conversations. This research contributes significantly to the development of emotion recognition technology and has the potential to improve human interaction with technology, as well as applications in sentiment analysis and natural language processing."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Reja Aji Saputra
"

Kemacetan merupakan salah satu masalah yang belum bisa terselesaikan di kota-kota besar di Indonesia. Salah satu cara untuk mengatasi masalah ini, yaitu dengan memanfaatkan teknologi yang dapat memantau lalu lintas secara otomatis, agar dapat dimonitor dan dianalisis untuk pengembangan fasilitas serta kebijakan guna menyelesaikan masalah ini. Teknologi yang dapat diterapkan untuk masalah ini, yaitu teknologi image processing yang dikolaborasikan dengan machine learning dan dengan bantuan library OpenCV. Pendeteksian objek menggunakan MobileNet-SSD dan Caffe model, objek yang dideteksi merupakan kendaraan yang melintas di jalan, pengambilan input menggunakan kamera CCTV yang diakses oleh publik. Kecepatan, performa, akurasi, dan kepadatan jalanan merupakan variabel yang dianalisis pada penulisan ini. Hasil dari pendeteksian memiliki akurasi yang tidak cukup baik sekitar 43% untuk keseluruhan, dan 68% untuk pendeteksian mobil. Terdapat penambahan fitur pada penelitian ini, yaitu pendeteksian motor yang memiliki akurasi 51%


Traffic jam is one of many problems that cannot be solved in various cities in Indonesia. One way to overcome this problem is to use technology that can monitor traffic automatically, so that traffic conditions can be monitored, and analyzed for the development of facilities and policies to solve this problem. One of the technologies that can be applied to this problem is image processing technology in collaboration with machine learning, and OpenCV. This research use Mobilenet-SSD and Caffe models for objects detection, objects detected are vehicles that cross the road, input is taken from CCTV cameras that can accessed by public. Speed, performance, accuracy, and road density are the variables analyzed in this paper. The results of the detection have an accuracy that is not good enough only about 43% for the whole detection, and 68% for the detection of the car, and 51% for the detection of the motorcycle

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Qusyairi Ridho Saeful Fitni
"Dalam beberapa tahun terakhir, keamanan data pada sistem informasi organisasi telah menjadi perhatian serius. Banyak serangan menjadi kurang terdeteksi oleh firewall dan perangkat lunak antivirus. Untuk meningkatkan keamanan, intrusion detection systems (IDS) digunakan untuk mendeteksi serangan dalam lalu lintas jaringan. Saat ini, teknologi IDS memiliki masalah kinerja mengenai akurasi deteksi, waktu deteksi, pemberitahuan alarm palsu, dan deteksi jenis serangan baru atau belum diketahui. Beberapa studi telah menerapkan pendekatan pembelajaran mesin (machine learning) sebagai solusi, dan mendapat beberapa peningkatan. Penelitian ini menggunakan pendekatan pembelajaran ensemble (ensemble learning) yang dapat mengintegrasikan manfaat dari setiap algoritma pengklasifikasi tunggal. Pada penelitian ini, dibandingkan tujuh pengklasifikasi tunggal untuk mengidentifikasi pengklasifikasi dasar yang digunakan untuk model ensemble learning. Kemudian dataset IDS terbaru dari Canadian Institute for Cybersecurity yaitu CSE-CIC-IDS2018 digunakan untuk mengevaluasi model ensemble learning. Hasil percobaan menujukan bahwa implementasi metode ensemble learning khususnya majority voting dengan tiga algoritma dasar (gradient boosting, decision tree dan logistic regression) dapat meningkatkan nilai akurasi lebih baik dibandingkan implementasi algoritma klasifikasi tunggal, yaitu 0,988. Selanjutnya, implementasi teknik pemilihan fitur spearman-rank order correlation pada dataset CSE-CIC-IDS2018 menghasilkan 23 dari 80 fitur, dan dapat meningkatkan waktu pelatihan model, yaitu menjadi 11 menit 4 detik dibanding sebelumnya 34 menit 2 detik.

In recent years, data security in organizational information systems has become a serious concern. Many attacks are becoming less detectable by firewall and antivirus software. To improve security, intrusion detection systems (IDSs) are used to detect anomalies in network traffic. Currently, IDS technology has performance issues regarding detection accuracy, detection times, false alarm notifications, and unknown attack detection. Several studies have applied machine learning approaches as solutions. This study used an ensemble learning approach that integrates the benefits of each single classifier algorithms. We made comparisons with seven single classifiers to identify the most appropriate basic classifiers for ensemble learning. Then the latest IDS dataset from the Canadian Institute for Cybersecurity, CSE-CIC-IDS2018, was used to evaluate the ensemble learning model. The experimental results show that the implementation of the ensemble learning method, especially majority voting with three basic algorithms (gradient boosting, decision tree and logistic regression) can increase the accuracy rate better than the implementation of a single classification algorithm, which is 0.988. Furthermore, the implementation of the spearman-rank order correlation feature selection technique in the CSE-CIC-IDS2018 dataset produced 23 of the 80 features, and could increase the model training time, which was 11 minutes 4 seconds compared to 34 minutes 2 seconds before."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Oemar Syarief Wibisono
"Beras merupakan makanan pokok mayoritas masyarakat Indonesia. Jika dibandingkan dengan konsumsi tahun 2019, konsumsi beras nasional meningkat sekitar 4,67 persen pada tahun 2021. Hal ini menunjukan bahwa setiap tahun konsumsi beras nasional akan meningkat karena seiring dengan pertumbuhan jumlah penduduk Indonesia. Sehingga dibutuhkan data produksi beras yang akurat dan tepat waktu untuk dapat menjaga ketersediaan stok beras nasional. Data citra satelit bisa menjadi alternatif untuk memprediksi produksi padi dikarenakan kekurangan yang dimiliki oleh metode survei yang dilakukan oleh BPS yaitu biaya yang cukup tinggi dan terdapat tenggang waktu diseminasi data. Gabungan citra SAR dan Optik dapat meningkatkan akurasi dari model yang dibangun. Selain itu penggunaan model deep learning memiliki akurasi yang lebih baik jika dibandingkan metode machine learning konvensional salah satunya kombinasi CNN dan Bi-LSTM yang mampu mengekstraksi fitur serta memiliki kemampuan untuk memodelkan data temporal dengan baik. Output yang diperoleh dengan menggunakan metode CNNBiLSTM untuk mengklasifikasikan fase pertumbuhan padi, menghasilkan akurasi yang terbaik dengan nilai akurasi 79,57 pada data testing dan 98,20 pada data training serta F1-score 79,78. Dengan menggunakan kombinasi data citra sentinel 1 dan 2 akurasi dari model LSTM dapat ditingkatkan. Selanjutnya akurasi yang didapatkan untuk model regresi produktivitas padi masih kurang baik. Akurasi terbaik dihasilkan oleh model random forest dengan nilai MAPE 0.1336, dan RSME 0,6871.

Rice is the staple food of the majority of Indonesian people. When compared to consumption in 2019, national rice consumption will increase by around 4.67 percent in 2021. This shows that every year rice consumption will increase in line with the growth of Indonesia's population. So that accurate and timely rice production data is needed to be able to maintain the availability of national rice stocks. Satellite imagery data can be an alternative for predicting rice production due to the drawbacks of the survey method conducted by BPS, which relatively high cost and the time span for data dissemination. The combination of SAR and Optical images can increase the accuracy of the model built. In addition, the use of deep learning models has better accuracy when compared to classical machine learning methods, one of them is the combination of CNN and Bi-LSTM which are able to extract features and have the ability to model temporal data properly. The output obtained using the CNNBiLSTM method to classify rice growth phases, produces the best accuracy with an accuracy value of 79.57 on testing data and 98.20 on training data and an F1-score of 79.78. By using a combination of sentinel 1 and 2 image data, the accuracy of the LSTM model can be improved. Furthermore, the accuracy obtained for the rice production regression model is still not good. The best accuracy was produced by the random forest model with a MAPE value of 0.1336 and RSME of 0.6871."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>