Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 19529 dokumen yang sesuai dengan query
cover
"Land cover information is vital for supporting decision concerning the management of the environment and for understanding the causes and trnds of human and natural processess on the earth surface...."
Artikel Jurnal  Universitas Indonesia Library
cover
Arsyian Rizki Pratama
"Telur ayam kampung atau telur ayam buras adalah telur ayam umum dikonsumsi masyarakat Indonesia sebagai makanan biasa atau juga sebagai obat. Pengklasifikasian kualitas telur ayam kampung. Dilakukan untuk dapat membedakan telur yang layak konsumsi dan tidak layak konsumsi. Beberapa penelitian serupa menggunakan Arduino dan sensor photodioda untuk melakukan klasifikasi, selain itu juga ada beberapa penelitian yang menggunakan machine learning untuk membedakan jenis telur. Dari penelitian yang telah di lakukan dilihat bahwa akurasi masih kecil, dan dirasa masih bisa di ditingkatkan. Dalam penelitian ini dibuat sistem klasifikasi kualitas telur ayam kampung dengan menggunakan algoritma you only look once (YOLO) versi 4. Data set yang digunakan pada penelitian ini berupa data set dari 4 kategori kondisi telur atau 4 class antara lain telur baik, busuk, fertil, dan telur retak. Data set diakuisisi dengan disinari dengan lampu led yang diberikan tegangan 12V pada kotak akuisisi, dan citra ditangkap dengan webcam Logitech c270. Dari pelatihan data set citra telur ayam kampung dihasilkan akurasi sebesar 96.76% di pengujian pada validation set dan sebesar 95.26% pada test set. Dari kasus pendeteksian kualitas telur ayam kampung dengan deep learning berbasis algoritma YOLOv4 ini memungkinkan adanya pengembangan lebih lanjut.

Local breed chicken eggs or local breed chicken eggs are chicken eggs that are commonly consumed by Indonesian people as ordinary food or also as medicine. Classification of local breed chicken egg quality. This is done to be able to distinguish eggs that are suitable for consumption and not suitable for consumption. Several similar studies used Arduino and photodiode sensors to carry out classification, besides that there were also several studies using machine learning to distinguish types of eggs. From the research that has been done, the accuracy is still small, and it is felt that it can still be improved. In this research, local breed chicken egg quality classification system was created using you only look once (YOLO) version 4 algorithm. The dataset used in this study was a data set of 4 categories of egg conditions or 4 classes including good eggs, rotten, fertile, and cracked eggs. The dataset was acquired by irradiating it with a led lamp supplied with a 12V voltage on the acquisition box, and the image was captured with a Logitech c270 webcam. From the local breed chicken egg image dataset training, an accuracy of 96.76% was obtained in the validation set test and 95.26% in the test set. From the case of detecting local breed chicken egg quality with deep learning based on the YOLOv4 algorithm, it allows for further development.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"There are two categories of well-known approach (as basic principle of classification process) for leraning structure of Bayesian Neywork (BN) in data mining (DM): ...."
ITJOICT
Artikel Jurnal  Universitas Indonesia Library
cover
Revania Rismarini
"Soft Tissue Tumor atau tumor jaringan lunak adalah suatu benjolan atau pembengkakan abnormal yang disebabkan pertumbuhan sel baru. Tumor jaringan lunak dapat terjadi di seluruh bagian tubuh mulai dari ujung kepala sampai ujung kaki. Penyakit tersebut dapat terjadi disemua kelompok umur. Menurut beberapa dokter setiap benjolan/tumor yang ada haruslah diperiksa sejak dini sehingga pasien dapat mendapatkan pengobatan yang tepat dan tidak terjadinya perkembangan kanker. Pada penelitian ini, metode machine learning yang digunakan untuk mengklasifikasi soft tissue tumor. Dengan data Soft Tissue Tumor yang memiliki beragam fitur, maka akan direduksi dengan seleksi fitur signal to noise ratio. Pada penelitian ini, penyakit Soft Tissue Tumor dideteksi dengan mengklasifikasikan pasien tersebut mengidap Soft Tissue Tumor atau tidak menggunakan Deep Neural Network dengan implementasi metode seleksi fitur signal to noise ratio dan akan dibandingkan nilai akurasi klasifikasi yang dihasilkan dari Deep Neural Network tanpa seleksi fitur dan Deep Neural Network dengan seleksi fitur signal to noise ratio. Data yang diperoleh berjumlah 76 data dengan total 17 fitur. Diperoleh hasil bahwa akurasi menggunakan seleksi fitur lebih tinggi dibandingkan tanpa seleksi fitur. Metode klasifikasi mendapat akurasi tertinggi pada jumlah fitur 14.

Soft tissue tumor is an abnormal lump or swelling caused by the growth of new cells. They can occur in all parts of the body from head to toe. Some types of this disease are more common in children, while some others are more common in adults. Though initially benign, this tumor can become aggressive if not treated. The more the tumor has invaded nearby tissues, the harder it is to completely remove. Sometimes, patients underestimate lumps because there are no distinctive clinical signs between malignant and benign tumors. Therefore, doctors suggest patients to immediately examine any existing lump so that it can be treated early and not develop into cancer. The usage of machine learning method to classify the diagnosis is very beneficial. High-dimensional soft tissue tumor data will be reduced using signal to noise ratio feature selection method. In this study, soft tissue tumor disease is detected by classifying soft tissue tumor patients and non-patients data using Deep Neural Network with the implementation of signal-to-noise feature selection. The accuracy will then be compared to Deep Neural Network classification without the implementation of feature selection. The data obtained amounted to 76 data with a total of 17 features. It is found that the accuracy of Deep Neural Network with feature selection is higher compared to the one without feature selection. The highest accuracy result is obtained with the use of 14 features."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hunter, Eric J.
Burlington : Ashgate , 2002
025.42 HUN c
Buku Teks  Universitas Indonesia Library
cover
Akhmad Syafaat
"Universitas XYZ sebagai institusi Perguruan Tinggi Terbuka Jarak Jauh (PTTJJ), senantiasa menjaga kualitas layanannya agar tetap berkualitas. Salah satu layanan yang senantiasa dijaga adalah layanan Bahan Ajar. Layanan Bahan Ajar didukung dengan manajemen stok bahan ajar dari mulai perencanaan dengan melakukan estimasi kebutuhan bahan ajar, gudang bahan ajar untuk menyimpan persediaan bahan ajar dan Student Record System (SRS). Bahan Ajar disiapkan dalam dua program yaitu melalui Sistem Paket Semester (Paket) dan non-paket. Mahasiswa yang mengikuti program nonpaket tidak diwajibkan membayar tagihan biaya bahan ajar. Untuk menjaga kualitas layanan bahan ajar, Universitas XYZ melakukan estimasi kebutuhan bahan ajar. Estimasi dilakukan secara manual dengan menggunakan formula yang berbeda pada setiap tahunnya. Estimasi dilakukan sebelum dan sesudah masa registrasi mata kuliah. Kenyataannya, kebutuhan bahan ajar masih mengalami kekurangan. Hal ini diketahui pada akhir tahun terdapat perbedaan antara hasil estimasi dan realisasi, sehingga tidak sedikit mahasiswa mendapatkan bahan ajar ketika memasuki akhir semester bahkan ketika memasuki awal semester baru. Penelitian ini bertujuan untuk menentukan berapa banyak bahan ajar yang harus disiapkan dengan cara mempelajari profil mahasiswa melalui data history mahasiswa menggunakan teknik classification. Metode yang digunakan Naïve Bayes, Decision Tree dan Support Vector Machine. Evaluasi menggunakan metode cross validation dengan nilai k 2, 3, 5 dan 10. Hasil percobaan menunjukkan bahwa metode Decision Tree memiliki accuracy tertinggi dibanding dengan yang lain.

XYZ University as an institution of Distance Learning Higher Education (PTTJJ), always maintains the quality of its services to remain qualified. One service that is always maintained is the Teaching Materials service. Teaching Material Services are supported by the management of teaching material stocks from the start of planning by estimating teaching material requirements, warehouse of teaching materials to store supplies of teaching materials and Student Record System (SRS). Teaching Materials are prepared in two programs, namely through the Semester Package System (Package) and nonpackage. Students who take non-package programs are not required to pay bills for teaching materials. To maintain the quality of teaching material services, XYZ University estimates the need for teaching materials. Estimates are done manually by using a different formula each year. Estimates are made before and after the registration period of the course. In fact, the need for teaching materials is still lacking. This is known at the end of the year there is a difference between the results of estimation and realization, so that not a few students get teaching materials when entering the end of the semester even when entering the beginning of the new semester. This study aims to determine how much teaching material must be prepared by studying student profiles through student history data using classification techniques. The method used is Naïve Bayes, Decision Tree and Support Vector Machine. The evaluation uses the cross validation method with values k 2, 3, 5 and 10. The experimental results show that the Decision Tree method has the highest accuracy compared to the others."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Chan, Lois Mai
New York: McGraw-Hill, 1994
025.3 CHA c
Buku Teks  Universitas Indonesia Library
cover
Rendle, Alfred Barton
India: Vikas, 1979
582.13 REN c
Buku Teks  Universitas Indonesia Library
cover
Vaught, Kay Cunningham
Melbourne: American Malacologists, 1989
594 VAU c
Buku Teks  Universitas Indonesia Library
cover
Batley, Sue
Oxford: Chandos, 2005
025.4 BAT c
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>