Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 213069 dokumen yang sesuai dengan query
cover
Muhammad Adyutatama
"Perkembangan teknologi pelapisan logam dengan metode anodisasi sangat berkembang dewasa ini, sehingga penelitian dalam bidang anodisasi untuk aplikasi material porous juga mengalami perkembangan yang cepat Proses anodisasi dengan material aluminium foil dilakukan dengan media larutan asam oksalat 0,2 M dilakukan dengan variasi terhadap temperatur dan tegangan menghasilkan lapisan oksida yang beragam. Tegangan yang diaplikasikan yaitu tegangan konstan 10, 40, dan 70 V dengan variasi temperatur 4, 22, dan 40 °C menghasilkan perbedaan tebal dan bentuk permukaan oksida pada permukaan aluminium foil.
Penggunaan tegangan yang tinggi dan temperatur yang rendah diharapkan menghasilkan lapisan aluminium oksida dengan pori yang berukuran kecil sehingga membran porous dapat dibentuk.
Pada pengamatan menggunakan SEM dengan perbesaran hingga 10000 X didapat garis gelap terang searah rolling. Garis yang berwarna gelap mengindikasikan lapisan porous yang telah tergerus. Pada potongan melintang didapat ketebalan lapisan aluminium oksida mulai dari 0,91 hingga 11,56 pm. Indikasi pori berukuran besar terlihat pada proses anodisasi dengan variasi temperatur 22 °C dengan tegangan 40 V yaitu sebesar 2-8 pm dengan tebal 8.81 pm dan pada variasi 40 °C dengan tegangan 10 V yaitu sebesar 400 nm dengan tebal 5,38 pm.

The development of metal coating technology with anodizing method is unfolding now days, so that research in anodizing for applied as porous materials also flourish rapidly. Anodized process using aluminium foil materials with Oxalic acid solution 0.2 M have varieties in oxide layer result Voltage that applied are constant voltage 10, 40, 70 V with different fix temperatures 4, 22, and 40 °C resulting difference oxide layer thickness in aluminium foil surface.
Using high voltage and low temperature, we expect that small oxide pore diameter i s created, so porous membrane can be formed.
Observation using SEM up to 10000X magnification, the light and dark layer in the line of rolling direction is visible. Dark layer indicate porous layer that had been solute. In the cross section area, the aluminium oxide layers are observed resulting 0.91 to 11.56 pm thick. Wide pore indication had shown in 22 °C and voltage 40 V anodizing process is 2 - 8 pm wide and 8.81 pm thick and in 40 °C and voltage 10 V is 400 nm wide and 5.38 thick.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
T25893
UI - Tesis Open  Universitas Indonesia Library
cover
Muhammad Adyutatama
"Perkembangan teknologi pelapisan logam dengan metode anodisasi sangat berkembang dewasa ini, sehingga penelitian dalam bidang anodisasi untuk aplikasi material porous juga mengalami perkembangan yang cepat. Proses anodisasi dengan material aluminium foil dilakukan dengan media larutan asam oksalat 0,2 M dilakukan dengan variasi terhadap temperatur dan tegangan menghasilkan lapisan oksida yang beragam. Tegangan yang diaplikasikan yaitu tegangan konstan 10, 40, dan 70 V dengan variasi temperatur 4, 22, dan 40 _C menghasilkan perbedaan tebal dan bentuk permukaan oksida pada permukaan aluminium foil. Penggunaan tegangan yang tinggi dan temperatur yang rendah diharapkan menghasilkan lapisan aluminium oksida dengan pori yang berukuran kecil sehingga membran porous dapat dibentuk. Pada pengamatan menggunakan SEM dengan perbesaran hingga 10000 X didapat garis gelap terang searah rolling. Garis yang berwarna gelap mengindikasikan lapisan porous yang telah tergerus. Pada potongan melintang didapat ketebalan lapisan aluminium oksida mulai dari 0,91 hingga 11,56 _m. Indikasi pori berukuran besar terlihat pada proses anodisasi dengan variasi temperatur 22 _C dengan tegangan 40 V yaitu sebesar 2 - 8 _m dengan tebal 8.81 _m dan pada variasi 40 _C dengan tegangan 10 V yaitu sebesar 400 nm dengan tebal 5,38 _m

The development of metal coating technology with anodizing method is unfolding now days, so that research in anodizing for applied as porous materials also flourish rapidly. Anodized process using aluminium foil materials with Oxalic acid solution 0.2 M have varieties in oxide layer result. Voltage that applied are constant voltage 10, 40, 70 V with different fix temperatures 4, 22, and 40 _C resulting difference oxide layer thickness in aluminium foil surface. Using high voltage and low temperature, we expect that small oxide pore diameter is created, so porous membrane can be formed. Observation using SEM up to 10000X magnification, the light and dark layer in the line of rolling direction is visible. Dark layer indicate porous layer that had been solute. In the cross section area, the aluminium oxide layers are observed resulting 0.91 to 11.56 _m thick. Wide pore indication had shown in 22 _C and voltage 40 V anodizing process is 2 - 8 _m wide and 8.81 ??m thick and in 40 _C and voltage 10 V is 400 nm wide and 5.38 thick."
Depok: Fakultas Teknik Universitas Indonesia, 2009
T41135
UI - Tesis Open  Universitas Indonesia Library
cover
Sipayung, Sandhy Putra Pangidoan
"Aluminium merupakan salah satu material logam yang banyak digunakan serta dikembangkan pada berbagai macam aplikasi. Untuk meningkatkan kualitas aluminium, baik sifat fisik maupun mekanisnya, dilakukan beberapa perlakuan terhadap aluminium tersebut. Salah satu proses yang dilakukan adalah dengan rekayasa permukaan melalui proses anodisasi. Dalam proses anodisasi, pada permukaan aluminium akan terbentuk lapisan aluminium oksida yang amat keras dan tahan terhadap korosi.
Saat ini pengembangan proses anodisasi dikembangkan dalam pengetahuan tentang nanoteknologi. Melalui proses anodisasi yang dilakukan diharapkan lapisan yang dihasilkan memiliki kebaikan sifat-sifat mekanis seperti ketebalan, kekerasan, dan karakteristik diameter pori yang sesuai agar nantinya dapat digunakan pada aplikasi nanoteknologi seperti pembuatan carbon nanotube, nanoporous membrane, ataupun quantum dots. Salah satu parameter yang terpenting dan menentukan karakteristik permukaan hasil anodisasi adalah konsentrasi dan jenis elektrolit yang digunakan.
Penelitian kemudian dilakukan untuk memahami pengaruh dari besarnya penambahan konsentrasi elektrolit terhadap karakteristik dari lapisan oksida yang dihasilkan pada permukaan aluminium foil. Pada penelitian ini digunakan elektrolit tetap asam oksalat 0,5 M, serta variabel bebas penambahan asam sulfat 0,12 M, 0,24 M, 0,36 M, dan 0,48 M.
Hasil penelitian kemudian menunjukkan bahwa lapisan oksida yang dihasilkan benar merupakan lapisan Al2O3 dan dengan meningkatnya konsentrasi asam sulfat lapisan oksida yang dihasilkan akan memiliki permukaan yang semakin pekat warna kelabu-nya serta meningkat ketebalannya, hingga mencapai ketebalan tertinggi sekitar 14,51 µm pada konsentrasi 0,36 M namun menurun hingga ketebalan 9,95 µm pada konsentrasi 0,48 M. Kekerasan lapisan yang dihasilkan tidak valid karena alat pengujian yang digunakan kurang mendukung untuk jenis sampel yang digunakan.

Aluminium is one of the most common metal that has been used and developed in wide application. To enhance the quality of aluminium (physical and mechanical properties), some process have been done to the aluminium itself. One of the process is by changing its surface properties with anodizing process. In anodizing process, the aluminium oxide layer would be formed on the surface, and it has great hardness and good corrosion resistance.
At the present, the anodizing process has been developed for the knowledge of nanotechnology. By anodizing, it is hoped that the layer produced would have good mechanical properties like thickness, hardness, and good pore diameter characteristic. Then, with it good properties, it can be used in nanotechnology application like in the manufacturing of carbon nanotube, nanoporous membrane, and quantum dots. One of the most important parameter to the characteristic of the anodizing surface layer is the use of electrolyte.
This experiment was conducted to study the effect of increasing electolyte concentration to the characteristic of the oxide layer that produced at the surface of aluminium foil. The experiment used 0,5 M oxalic acid mixed with 0,12 M, 0,24 M, 0,36 M, and 0,48 M sulfuric acid.
The results showed that the oxide layer was Al2O3 layer. With the increase of sulfuric acid concentration, the oxide layer would be darker in the colour of gray and has some increasing in thickness. The highest thickness was about 14,51 µm in the addition of 0,36 M electrolytic concentration, but it is decreased to the 9,95 µm thickness when the concentration increased up to 0,48 M. The hardness of the layer could not be tested. The hardness testing machine used was not supported the kind of sample that were tested.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41736
UI - Skripsi Open  Universitas Indonesia Library
cover
Hendry Setiawan
"Aluminium merupakan logam yang paling ekonomis yang ada saat ini. Hal ini disebabkan karena aluminium merupakan material logam yang paling kedua terbanyak yang terdapat dalam lapisan bumi. Anodisasi adalah rerekayasa permukaan aluminium. Prinsip proses anodisasi menggunakan sel elektrolisa, dimana aluminium berperan sebagai anoda, katodanya adalah logam inert, saling dihubungkan dalam larutan elektrolit tertentu dan diberi arus selama beberapa saat. Hasil dari proses tersebut, aluminium akan teroksidasi dan akan membentuk lapisan tipis Al2O3 yang protektif terhadap serangan korosi. Dalam proses ini, hasil akhir pelapisan akan ditentukan dari beberapa parameter yang digunakan, salah satunya adalah tegangan yang digunakan. Oleh sebab itu, untuk mengetahui pengaruh tegangan terhadap ketebalan dan kekerasan lapisan oksida yang dihasilkan pada permukaan aluminium HD2G. Penelitian dilakukan menggunakan 20 % larutan asam sulfat dan 5 % asam oksalat dengan tegangan 5, 10, 15, 20, dan 25 volt. Pada penelitian ini dengan penambahan tegangan maka akan secara signifikan menambah ketebalan lapisan oksida. Semakin tinggi tegangan yang digunakan maka distribusi kekerasan menjadi tidak teratur. Ketebalan terbesar yang dihasilkan adalah 64 _m pada 25 volt dan kekerasan tertinggi yang dihasilkan adalah 70 VHN.

Aluminium is the most economical metal nowadays because aluminium is second largest metal in the earth crust. Anodizing is a process to change its surface properties. Principle of anodizing is the electrochemical process called electrolytic cell, the anode is aluminium while the inert metal acts as cathode. Electrodes immersed in an electrolyte solution and current is applied to the electrodes. Aluminium will be oxidized and form protective thin oxide film Al2O3 that resist to corrosion attack. Some of important parameters that determine final coating are voltage. An experiment is conducted to understand the effect voltage to hardness and thickness of oxide film at aluminium HD2G. Solultion of 20 % sulfuric acid and 5 % oxalic acid with 5, 10 ,15, 20, and 25 voltage are used in this experiment. With the changes of voltage significantly add the thickness of oxide layer. More higher voltage so hardness distribution is non uniform. The maximum thickness of oxide layer is 64 um at 25 voltage and the highest hardness is 70 VHN"
Depok: Fakultas Teknik Universitas Indonesia, 2007
S41629
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dewin Purnama
"Perkembangan ilmu dan teknologi material dewasa ini memacu dikembangkan material dengan karakter sesuai yang diharapkan antara lain ulet, keras, tahan korosi, tahan panas, ringan dan lain sebagainya. Aluminium salah satu material yang menarik perhatian untuk dikaji karena dapat membentuk anodic porous alumina yang memiliki sifat khas yaitu keteraturan strukturnya yang terbentuk. Anodic porous alumina sangat banyak digunakan baik dalam sektor yang sederhana dan inovatif. Teknologi yang saat ini sangat penting untuk pembuatan anodic porous alumina adalah proses anodizing. Sifat dan struktur aluminum oksida tersebut sangat dipengaruhi oleh beberapa variabel proses anodisasi seperti waktu anodisasi, jenis dan konsentrasi larutan elektrolit, tegangan dan rapat arus, serta temperatur. Pembentukan anodic porous alumina dari aluminium foil dilakukan dengan metoda anodisasi sederhana. Proses anodisasi dilakukan dalam larutan elektrolit asam asetat 0,2 M dengan waktu anodisasi 30 menit yang dilakukan dengan pada temperatur 4 °C, 22 °C dan 40 °C dan tegangan 10 V, 40 V, 70 V, 90 V dan 120 V. Pengamatan ukuran diameter pori dilakukan dengan alat measuring microscope sedangkan pengukuran ketebalan oksida dilakukan dengan alat SEM. Hasil pengamatan menunjukkan bahwa ukuran diameter pori aluminium oksida yang terbentuk dan ketebalan lapisan oksida pada aluminium akan meningkat seiring dengan peningkatan temperatur dan tegangan anodisasi. Rata-rata ukuran diameter pori yang terbentuk minimal terjadi pada temperatur 4 °C dan tegangan 10 volt yaitu 269,4 µm dan rata-rata ukuran diameter pori maksimal yang terbentuk terjadi pada temperatur 22 °C dan tegangan 90 V. Rata-rata ketebalan lapisan oksida minimal terjadi pada temperatur 4 °C dan tegangan 10 volt yaitu 0,38797 µm dan rata-rata ketebalan lapisan oksida maksimal terjadi pada temperatur 40 °C dan tegangan 90 volt yaitu 16,83 µm

Recently, the development of science and technology material drive the material to be developed in accordance with the character that is expected, among other ductile, hard, corrosion resistant, heat resistant, light and so forth. Aluminum, one of the material to attract attention because it can be formed anodic porous alumina with a regularity that is typical nature of the structure that formed. Anodic porous alumina is widely used in both the simple and innovative. The technology at this time is very important for making porous anodic alumina is a process of anodizing. Properties and structure of the porous aluminum oxide was influenced by several variables from anodizing process like time, type and concentration of solution, voltage and current density, and temperature. The formation of porous anodic alumina from the aluminum foil is done with simple methods of anodizing. Process of anodizing carried out in acid acetate electrolyte solution 0.2 M , with anodizing time of 30 minutes with the temperature at 4 °C, 22 °C and 40 °C and voltage 10 V, 40 V, 70 V, 90 V and 120 V. Diameter pore size of the observation is done by means of measuring microscope while oxide thickness measurements made with an SEM. Observation results show that the size of pore diameter aluminum oxide thickness and that the aluminum oxide layer will be increased in line with the increase of anodizing temperature and voltage. Average pore size diameter that occurred in at least 4 °C and the voltage 10 volt is 269,4 µm and average pore diameter of maximum size that occurred in 22 °C and voltage 90 V. The average oxide layer thickness occurs at temperatures at least 4 oC and voltage 10 volt is 0.38797 µm and the average oxide layer thickness occurs at the maximum temperature 40 °C and voltage 90 volt is 16.83 µm."
Depok: Fakultas Teknik Universitas Indonesia, 2009
T26267
UI - Tesis Open  Universitas Indonesia Library
cover
Hutasoit, Martino R.
"Modifikasi permukaan aluminium secara elektrokimia merupakan suatu proses yang tengah berkembang pesat saat ini. Modifikasi permukaan secara elektrokimia pada awalnya lebih diarahkan pada peningkatan nilai ketahanan korosi, peningkatan kekerasan, dan juga peningkatan nilai estetika. Namun pada perkembangannya, salah satu proses elektrokimia, yaitu anodisasi, telah berkembang menjadi suatu proses modifikasi permukaan yang bertujuan untuk diaplikasikan pada teknologi berbasis nanoteknologi. Pemanfaatan lapisan oksida pada permukaan aluminium hasil proses anodisasi dilakukan dengan memanfaatkan pori (porous anodic alumina) yang terbentuk sebagai template pada pembuatan material yang berbasis pada nano teknologi seperti quantum-dot arrays, photonic crystals, magnetic memory arrays, nanowire dan berbagai alat mikroelektronik lainnya.
Penelitian ini bertujuan untuk mengetahui pengaruh perubahan konsentrasi larutan elektrolit terhadap ketebalan lapisan oksida yang terbentuk pada permukaan aluminium. Penelitian dilakukan dengan menggunakan sampel logam berupa aluminium foil (pure aluminium, 96.49%Al) dengan permukaan anodisasi sebesar 2X2 cm. Larutan elektrolit yang digunakan adalah asam oksalat dengan variasi konsentrasi 0.4 M, 0.5 M, 0.6 M. Tegangan pada proses adalah 32.5 Volt, temperatur dijaga pada rentang 4°C - 16°C, dan diaduk dengan menggunakan magnetic stirrer 500 rpm.
Hasil yang diperoleh melalui penelitian ini adalah bahwa tidak terjadi perubahan warna yang signifikan pada proses anodisasi dengan larutan asam oksalat. Nilai ketebalan lapisan oksida yang terbentuk akan semakin meningkat pada peningkatan konsentrasi asam oksalat. Nilai kekerasan pada sampel aluminium foil tidak dapat dilakukan dengan menggunakan metode microhardness tester.

Modification of aluminum surface with electrochemistry methods are developing rapidly nowadays. This surface modification were initially intended to increase the corrosion resistance, hardness, properties and improving the aesthetic appearance of aluminum. Recently, one of these electrochemistry methods, anodizing, were developed into one of the surface modification that can be applied in nanotechnology. Oxide layer which formed by anodizing process in the aluminum surface could be used as template for microelectronic nanotechnology material such as quantum-dot arrays, photonic crystals, magnetic memory arrays, nanowire because of it porous anodic alumina texture.
This research is conducted to found the effect of electrolyte concentration changes on thickness of oxide layer formed in aluminum surface. This research is carried out with aluminum foil sample (pure aluminum, 96.49% Al) with anodizing surface measured 2X2 cm. Electrolyte which used in this research is oxalic acid with concentration variation 0.4 M, 0.5 M, 0.6 M. This process using 32.5 Volt potential, temperature were kept in range of 4°C - 16°C, and the electrolyte were stirred electromagnetically at 500 rpm.
The result from this research shows that the colour of oxide layer by anodizing of aluminum in oxalic acid solution was transparent. By anodizing in oxalic acid, the thickness of formed oxide layer was dependent with the increase of concentration. Hardness testing on aluminum foil or oxide layer could?nt use to obtain hardness number in this research.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41633
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhamad Anton Eka Sakti
"Saat ini nanoteknologi berkembang dengan sangat pesat karena menghasilkan sifat yang menarik dan berbeda dengan teknologi yang dihasilkan dalam ukuran makroskopis. Produk-produk nanoteknologi berbasis nanostructure materials telah banyak dikaji dan dikembangkan, beberapa diantaranya adalah carbon nanotube, quantum dots, dan nano porous membrane. Sintesis nanostructure materials tersebut dapat dilakukan dengan template nano porous aluminum oxide hasil proses anodisasi. Sifat dan struktur nanoporous aluminum oxide tersebut sangat dipengaruhi oleh beberapa variabel proses anodisasi seperti waktu anodisasi, jenis dan konsentrasi larutan elektrolit, tegangan dan rapat arus, dan juga temperatur.
Pembuatan nano porous aluminum oxide dari aluminium foil untuk aplikasi nanostructure materials telah dilakukan dengan metoda anodisasi. Proses anodisasi dilakukan dengan kenaikan temperatur 10 °C, 20 °C, dan 30 °C dalam campuran larutan asam sulfat 3 M dan asam oksalat 0,5 M, pada kondisi tegangan 15 volt, dan waktu anodisasi 30 menit. Pengamatan diameter pori dilakukan dengan alat FESEM sedangkan pengukuran ketebalan dilakukan dengan alat SEM. Hasil pengamatan menunjukkan bahwa pada kondisi temperatur 10 °C dan 20 °C tidak terbentuk lapisan nano porous alumina sedangkan pada temperatur 30 °C terbentuk nano porous dengan keteraturan near-ordered dengan diameter ratarata 25 nm. Pengujian ketebalan oksida menunjukkan bahwa semakin tinggi temperatur menyebabkan kenaikan ketebalan rata-rata oksida. Ketebalan lapisan oksida mengalami kenaikan berturut-turut 351 nm, 652 nm, dan 770 nm pada temperatur 10 °C, 20 °C, dan 30 °C.

Recently, nanotechnology grows fast because it develops interesting features and different from technology produced on macroscopic scale. Nanotechnology products like nanostructure materials have been studied and developed. Some of them are carbon nanotube, quantum dots, and nano porous membrane. Fabrication of nanostructure materials can be done by template of nano porous aluminum oxide from anodizing process. Properties and structure of the nano porous aluminum oxide was influenced by several variables from anodizing process like time, type and concentration of solution, voltage and current density, and temperature.
Fabrication of nano porous aluminum oxide from aluminum foil for nanostructure materials application have been done from anodizing process in this research. Anodizing process was done on different temperature 10 °C, 20 °C, and 30 °C in mixing solution of sulfuric acid 3 M and oxalic acid 0.5 M, voltage 15 volt, anodizing time 30 minute. Observation of pores diameter was done by FESEM and measurement of oxide thickness was done by SEM. The result shows that there is no formation of porous alumina on temperature 10 °C and 20 °C. In other hand, there is formation of near-ordered nano porous aluminum oxide on temperature 30 °C with 25 nm average diameters. Measurement of thickness show that oxide thickness increases when temperature is raised. Oxide film thickness increases 351 nm, 652 nm, and 770 nm on temperature 10 °C, 20 °C, and 30 °C, respectively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41677
UI - Skripsi Open  Universitas Indonesia Library
cover
Mabrur
"Pengembangan teknologi proses anodisasi diharapkan dapat memberikan nilai tambah khususnya pada pemanfaatan penggunaan proses anodisasi, penggunaan alumunium foil pada proses anodisasi diharapkan memberikan informasi lebih dalam proses dalam pembentukan lapisan oksida dan pembentukan pori pada permukaan anodisasi.
Tujuan dalam penelitian ini untuk mengetahui pengaruh temperatur dan tegangan dalam pembentukan oksida dalam asam fosfat dan asam oksalat, proses anodisasi menggunakan alumunium foil . Alumunium foil yang dianodisasikan dengan perubahan temperature 4°C, 22°C dan 40°C dengan variasi tegangan 10V, 40V,70V,90V dan 120V yang diaduk dengan menggunakan stirrer 200 rpm.
Hasil yang diperoleh dalam penelitian ini belum memberikan hasil yang significan pada proses pembentukan pori dan ketebalan oksida, indikasi pembentukan pori diperoleh pada rentang temperature 22°C dan 40°C dengan variasi tegagan 40V, 70V dan 90V.

Anodisasi technology development process is expected to provide added value particularly in the use of anodisasi process, the use of aluminum foil in the process anodisasi expected to provide more information in the process in the formation of oxide layer on the surface of the anodisasi
The purposed this research to determine the influence of temperature and voltage in the formation of oxide in phosphoric acid and acid oksalat, anodization process using aluminum foil. Aluminum foil with the changes that anodization temperature 4°C, 22°C and 40°C with variations in voltage 10V, 40V, 70V, 90V and 120V are stirred using a stirrer with a 200 rpm.
Result of this reseace not yet give significant result for porous formation and thickness oxide layer, but indication porous formation with temperature 22°C and 40°C with range of voltage 40 V.70V and 90V.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
T25958
UI - Tesis Open  Universitas Indonesia Library
cover
Vika Rizkia
"Proses anodisasi pada aluminium menghasilkan struktur fenomenal berupa oksida logam yang terkenal dengan istilah Anodic Aluminum Oxide (AAO). AAO sangat diperlukan untuk meningkatkan daya adhesi pada proses pelapisan selanjutnya baik pada aluminium dan paduannya maupun komposit aluminium. Hal tersebut terjadi akibat adanya ikatan saling kunci antara lapisan oksida hasil anodisasi (AAO) dengan pelapis berikutnya. Morfologi pori pada AAO dapat dengan mudah dimodifikasi melalui perubahan parameter anodisasi. Namun, sayangnya penelitian-penelitian sebelumnya belum menyediakan informasi apapun mengenai pengontrolan diameter pori. Sedangkan seperti yang kita ketahui bahwa perbedaan aplikasi yang diinginkan membutuhkan diameter pori yang berbeda pula.
Oleh karena itu guna mendapatkan diameter pori dengan ukuran tertentu maka pemilihan parameter proses anodisasi yang tepat sangatlah penting. Untuk memenuhi kebutuhan tersebut, dalam penelitian ini akan dihasilkan persamaan empiris yang dapat memprediksi ukuran diameter dan densitas pori AAO yang terbentuk hasil anodisasi dengan berbagai parameter tertentu agar dapat digunakan dalam aplikasi yang sesuai.
Tujuan utama penelitian ini adalah pengembangan persamaan empiris yang menggambarkan hubungan konsentrasi oksalat, tegangan dan waktu anodisasi terhadap diameter pori. Namun penelitian ini juga menganalisis mekanisme pembentukan, karakteristik, dan ketahanan korosi lapisan terintegrasi pada Al7075/SiC. Serta menganalisis pengaruh konsentrasi, temperatur, dan resistivitas larutan elektrolit, dan tegangan anodisasi terhadap diameter dan densitas pori AAO pada aluminium foil.
Proses anodisasi Al7075/SiC dilakukan dalam larutan asam sulfat 16% H2SO4 dengan rapat arus 15, 20, 25 mA/cm2 pada 25, 0, -25oC selama 30 menit. Selanjutnya dilakukan proses sealing dalam larutan CeCl3.6H2O + H2O2 pada temperatur ruang dengan pH 9 selama 30 menit. Proses anodisasi pada aluminium foil dilakukan dalam larutan 3 M H2SO4 + 0,5 M; 0,7 M; dan 0,9 M H2C2O4, dan 0,3; 0,5; 0,7 M H2C2O4 selama 40-60 menit. Proses anodisasi dilakukan pada tegangan konstan 35, 40, dan 45 V untuk larutan asam oksalat dan 15 V untuk larutan campuran.
Pengamatan dan evaluasi morfologi lapisan pori hasil anodisasi dilakukan menggunakan alat FE-SEM (Field Emission Scanning Electron Microscope), ketahanan korosi material diinvestigasi menggunakan pengujian polarisasi dan EIS, sedangkan analisa kualitatif terhadap morfologi pori (diameter dan densitas) pada AAO menggunakan perangkat lunak ImagePro. Pengembangan persamaan empiris menggunakan metode derajat terkecil dan permukaan respon.
Proses terintegrasi yang diaplikasikan pada komposit Al7075/SiC pada temperatur anodisasi 0 oC menghasilkan terbentuknya deposit bulat kaya cerium dengan diameter 64 nm ( 3 nm) yang menutupi seluruh permukaan lapisan oksida dan rongga secara efektif. Proteksi terintegrasi anodisasi dan pelapisan cerium meningkatkan ketahanan korosi hingga 4 order perbesaran dibandingkan tanpa perlindungan akibat terjadinya ikatan saling kunci antara kedua lapisan tersebut.
Peningkatan konsentrasi larutan elektrolit asam oksalat, temperatur, tegangan dan waktu celup anodisasi dalam larutan 0,3; 0,5; dan 0,7 M mengakibatkan peningkatan diameter pori permukaan pada AAO. Sedangkan, penambahan asam sulfat dalam asam oksalat menghasilkan pori dengan morfologi diameter pori yang jauh lebih halus dan densitas pori yang jauh lebih besar. Secara umum, densitas pori hanya tergantung pada diameter pori hasil anodisasi, dimana peningkatan diameter pori menghasilkan densitas pori yang semakin menurun. Persamaan empiris hubungan antara tiga faktor anodisasi (konsentrasi asam oksalat, tegangan, dan waktu anodisasi) dengan diameter pori hasil dari penelitian ini adalah : Dp = 0,140625 MVt + 0,33125 MV ? 523542 Mt + 35,64583 M ? 0,04006 Vt + 0,685764 V +1,792431 t ? 42,5053 (derajat terkecil) dan Dp = 33,3 ? 236,3 M ? 1,453 V + 0,3942 t + 7,60 MV (metode derajat satu)

Anodizing process in aluminum produces a phenomenal structure in form of metal oxide which is known as Anodic Aluminum Oxide (AAO). AAOis a very useful morfology to improve the adhesion properties for further coating in aluminum alloy and composite aluminum. This phenomenon is related to the presence of interlock bond between AAO and the next layer. The AAO morphology can be modified simply by varying anodizing parameters.
Therefore, selecting appropriate parameters plays an important role in order to obtain the desired pore size. Unfortunately, the preliminary studies did not provide any information on controlling the pore size and density (through increasing/decreasing the concentration of sulfuric acids, voltage, and duration of anodizing to determine pore diameter and density).
For that purpose, in this research some empirical models were built to predict the pore size produced by anodizing process in various parameters. The grand design if this research aims to develop empirical equations which predict the relationship between oxalic acid concentration, anodizing voltage and time to the pore diameter. However, this research also aims to analyze the formation mechanism and of the integrated layer on Al7075/SiC, as well as the enhancement of corrosion resistance resulted from the integrated layer. Moreover, the influence of various anodizing parameters, i.e. resistivity, concentration, temperature, and type of electrolyte on pore characteristics of AAOis also conducted in this study.
Anodizing process of Al7075/SiC was conducted in 16% H2SO4 solution in current densities 15, 20, 25 mA/cm2 at25, 0, -25oC for 30 minutes. Subsequently, cerium sealing process was carried out in CeCl3.6H2O+H2O2 at room temperature and pH 9 for 30 minutes. Anodizing of aluminum foil were carried out in 0,3; 0,5; 0,7M H2C2O4 solution and a mixture solution of 0.5M, 0.7M, and 0.9M H2C2O4 and 3M H2SO4 for 40-60 minutes. Anodizing processes were performed under potentiostatic conditions with constant potentials of 35, 40, and 45V for oxalic solution and 15 V for a mixture solution.
Morphology of AAO layer observations were performed using field emission scanning electron microscopy (FE-SEM) FEI Inspect F50, while the corrosion resistance of materials were investigated by means of polarization and EIS, and qualitative analysis of pore characteristics (pore diameters and densities) accomplised by ImagePro software.
The development of empirical equations using least square and response surface methods Integrated protection by conducting anodization at 0oC prior to cerium sealing in Al7075/SiC leads tothe formation of cerium spherical deposit in the diameter of 64 nm ( 3nm) which effectively covered most of the surface of oxide film as well as cavity. Moreover, this integrated protection enhanced four orders magnification of corrosion resistance than that of bare composite due to interlock bonding between the layers.
The increasing of electrolyte concentration and temperature, as well as voltage and duration of anodizing in 0.3; 0.5; dan 0.7 M oxalic acid leads to the increasing of pore diameter in AAO surface. While, the addition of sulfuric acid in oxalic acid provides much smaller pore diameters and higher pore densities at lower voltages than single electrolyte of oxalic acid. In general, pore density is only dependent on pore diameter, which decreases with the increases of pore diameter. The empirical equations built in this research are : Dp = 0,140625 MVt + 0,33125 MV ? 523542 Mt + 35,64583 M ? 0,04006 Vt + 0,685764 V +1,792431 t ? 42,5053 (least square) and Dp = 33,3 ? 236,3 M ? 1,453 V + 0,3942 t + 7,60 MV (first order model)
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
D2263
UI - Disertasi Membership  Universitas Indonesia Library
cover
Fajar Adhiyat
"Aluminium paduan seri 2xxx-T3 merupakan paduan yang memiliki kombinasi yang baik antara kekuatan yang tinggi, ketangguhan yang baik, dan memiliki kemampulasan yang baik pada kondisi tertentu. Aplikasi dari Al2xxx-T3 adalah struktur pesawat terbang, badan truk, baut dan sekrup pesawat terbang, dan tangki roket. Kombinasi sifat yang baik dari material Al2xxx-T3 dalam berbagai aplikasi tersebut tetap memiliki kelemahan. Salah satu kelemahan material tersebut adalah ketahanan yang rendah terhadap korosi. Kelemahan ini dapat menjadi keterbatasan penggunaan material pada kondisi lingkungan yang korosif sehingga dapat mempercepat terjadinya degradasi dari material Al2xxx-T3 tersebut. Oleh karena itu diperlukan suatu modifikasi permukaan dengan proses anodisasi.
Penelitian ini bertujuan untuk menganalisis pengaruh parameter proses yakni temperatur dan rapat arus anodisasi terhadap pembentukan lapisan anodik berpori. Anodisasi dilakukan pada tiga temperatur berbeda yakni 10oC, 0oC dan -10oC dengan variasi rapat arus adalah 15 mA/cm2, 20 mA/cm2 dan 25 mA/cm2. Material hasil anodisasi kemudian dilakukan dua jenis pengujian yaitu pengujian kekerasan dan pengujian ketahanan korosi. Pengujian kekerasan mikro Vickers digunakan untuk mengetahui sifat mekanik lapisan anodik yang terbentuk dan pengujian ketahanan korosi menggunakan metode polarisasi bertujuan untuk mengetahui ketahanan korosi dari lapisan anodik yang terbentuk.
Hasil pengujian memperlihatkan adanya peningkatan kekerasan permukaan lapisan anodik alumina saat variabel temperatur diturunkan ke temperatur 0oC dimana kekerasan tertinggi adalah 511 HV yang didapat pada temperatur 0oC dengan rapat arus 20 mA/cm2. Kemudian penurunan temperatur hingga 0oC dan peningkatan rapat arus hingga 25 mA/cm2 akan meningkatkan ketahanan korosi namum kembali turun dengan penurunan temperatur hingga -10oC. Parameter proses yang paling optimal untuk menciptakan lapisan anodik yang memiliki kekerasan dan ketahanan korosi yang tinggi adalah pada temperatur 0oC dan rapat arus 20 mA/cm2.

Aluminum alloys series 2xxx-T3 are an alloy that has a good combination of high strength, good toughness, and have a good weldability on certain conditions. The application of Al2xxx-T3 are for the structure of the aircraft, truck bodies, airplanes bolts and screws, and rockets tanks. The combination of good properties of this material Al2xxx-T3 in a variety of applications still have a weaknesses. One disadvantage of these materials is low resistance to corrosion. This weakness may become a limitations on the use of materials on corrosive environmental conditions which is can accelerate the degradation of the material Al2xxx-T3. Therefore we need a surface modification by anodizing process.
This study aims to analyze the influence of anodizing process parameters which is temperature and current density on the formation of porous anodic coating, Anodizing has been done at three different temperatures which are 10oC, 0oC and -10oC with variation of current density which are 15 mA/cm2, 20 mA/cm2 and 25 mA/cm2. Sample that has been done being anodized then will be tested by two methods. Micro Vickers hardness testing was used to determine the mechanical properties of anodic layer and corrosion resistance testing using the polarization method to determine the corrosion resistance of anodic coatings formed.
The test result shows an increase of the surface layer of anodic alumina hardness when the variable temperature is lowered to 0oC with the highest hardness is 511 HV obtained at the temperature and the current density are 0oC and 20 mA/cm2. Then lowering the temperature to 0oC and increasing the current density into 25 mA/cm2 would increase the anodic film corrosion resistance but the corrosion resistance would drop again after lowering the temperature into -10oC. The optimum process parameters to form an anodic coating which have the hardest surface and high corrosion resistance is at 0oC temperature and the current density is 20 mA/cm2.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S57320
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>