Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 130080 dokumen yang sesuai dengan query
cover
Rinaldy Dalimi
Jakarta: UI-Press, 2007
PGB 0426
UI - Pidato  Universitas Indonesia Library
cover
Rinaldy Dalimi
Fakultas Teknik Universitas Indonesia, 1998
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Jakarta: Lemabaga Ilmu Pengetahuan Indonesia, 1987
621.3 PER
Buku Teks  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 2003
TA3270
UI - Tugas Akhir  Universitas Indonesia Library
cover
Daryanto
Jakarta: Bumi Aksara , 1999
621.3 DAR p
Buku Teks  Universitas Indonesia Library
cover
Van Valkenburg, Mac Elwyn
Jakarta: Erlangga, 1988
621.319 2 VAL n
Buku Teks  Universitas Indonesia Library
cover
Bird, J.O.
Oxford: Newnes, 1995
621.3 BIR e
Buku Teks  Universitas Indonesia Library
cover
J. Kokelaar
Jakarta: Pradnya Paramita, 1971
621.3 KOK t I
Buku Teks SO  Universitas Indonesia Library
cover
Ratna Prabowo
"Hukum induksi faraday menyatakan bahwa besarnya ggl induksi di dalam rangkaian tertutup sama (kecuali tanda negatifnya) dengan kecepatan perubahan fluks magnet pada rangkaian tersebut. Dengan hukum ini maka ggl induksi dapat dibangkitkan setiap kali ada perubahan fluks magnet pada kumparan. Salah satu metode untuk menghasilkan perubahan fluks magnet pada kumparan adalah dengan menempatkan perisai magnetik di antara magnet dan kumparan. Perisai ini berfungsi untuk menahan dan melewatkan fluks magnet ke kumparan. Ketika ditahan, fluks magnet mengalir melalui perisai sehingga fluks magnet tidak dapat masuk ke kumparan. Ketika dilewatkan, fluks magnet tidak mengalir melalui perisai tetapi langsung menuju kumparan. Dengan cara ini perubahan fluks magnet pada kumparan dapat terjadi sehingga ggl induksi dapat dihasilkan.

The faraday induction law states that voltage of emf induction in a circuit is proportional (except the minus sign) to the rate of change of the magnetic flux on those circuit. By this law, induced emf can be generated every time there is a change in magnetic flux in the coil. One methode for generating magnetic flux changing in the coil is by placing magnetic shield betwen the magnet dan coil. This shield serve to hold and release magnetic flux to the coil. When it hold, magnetic flux flow through the shield so that magnetic flux can not go into the coil. When it release, magnetic flux do not flow through the shield but direct to the coil. By this methode, magnetic flux change in the coil can be generated so that induced emf can be produced."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42761
UI - Skripsi Open  Universitas Indonesia Library
cover
Yessica Ratri Wiguna
"Transfer daya nirkabel merupakan sebuah cara baru untuk mengatasi ketidaknyamanan dari sumber listrik dengan kabel. Salah satu cara untuk menyuplai listrik tanpa kabel yaitu menggunakan resonansi kopling elektromagnetik. Cara ini dapat menyuplai listrik ke beban karena adanya medan magnet dan medan listrik di sekitar alat transfer daya nirkabel tersebut. Jadi, perlu diketahui karakteristik medan magnet dan medan listrik dari antena pengirim dan penerima yang akan digunakan pada alat tersebut dan hasilnya apabila dibandingkan dengan standar paparan elektromagnetik. Pada tulisan ini, tiga model antena loop dianalisis yaitu antena berongga, antena pejal, dan antena mikrostrip. Beberapa parameter disimulasikan dengan perangkat lunak berbasis finite integration technique (FIT) yaitu intensitas medan magnet(H-field), medan magnet(B-field), dan intensitas medan listrik(E-field).
Hasil simulasi menunjukkan bahwa antena mikrostrip menghasilkan nilai tertinggi pada ketiga parameter yang dianalisis yaitu H-field, B-field, and E-field. Hasil distribusi medan untuk tipe antena yang lain, antena berongga dan pejal, lebih kecil dari pada yang dihasilkan oleh antena mikrostrip. Berdasarkan standar paparan elektromagnetik dari ICNIRP dan IEEE, nilai medan magnet dan medan listrik alat transfer daya nirkabel hasil simulasi masih dibawah standar.Sedangkan pada penerapannya untuk teknologi ruang angkasa, desain dan pengukuran pada jarak 5 mm belum sesuai untuk teknologi ruang angkasa.

Wireless power transfer is a new way to break inconvenience of wiring power sources. The best way how to supply electric power through wireless system is using the electromagnetic coupled resonance phenomena. It can supply electric power to the load because of the magnetic and electric field that emerge around wireless power transfer device. So, we need to know the characteristic of magnetic and electric field from transmitter and receiver that will be used for the device and see the results based on electromagnetic exposure standard. In this study, three loop model of antennas are investigated, namely a solid coil model, hollow coil model, and microstrip coil model. Some parameters of those models are numerically analyzed using the finite integration technique (FIT) such as magnetic field intensity (H-field), magnetic field (B-field), and electric field intensity (E-field).
The final result shows that microstrip antenna has the highest score in H-field, B-field, and E-field. The field distribution of the others, those are solid coil and hollow coil, are relatively less than that the microstip coil has.Based on electromagnetic exposure like ICNIRP and IEEE, magnetic and electric field of wireless power transfer device are below the standards. Meanwhile, for space aircraft applications, this kind of design and simulation which are measured on 5 mm is unappropriate for space aircraft technology.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S52588
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>