Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 89936 dokumen yang sesuai dengan query
cover
Merdisyam
"Tesis ini mengenai sistem pengamanan Pusat Reaktor Serba Guna G.A Siwabessy yang berada di kawasan Puspiptek Serpong Tangerang. Instalasi nuklir Pusat Reaktor Serba Guna G.A Siwabessy merupakan suatu objek vital nasional yang dimiliki bangsa Indonesia, sebagai instalasi nuklir sektor keamanan merupakan hal yang sangat menjadi prioritas dan penting, didalamnya terdapat fasilitas reaktor nuklir dan menyimpan bahan berbahaya mengandung radiasi dan bahan radioaktif.
Kawasan instalasi nuklir sangatlah rentan terhadap timbulnya berbagai masalah yang berkaitan dengan keselamatan, bahaya kerawanan dan ancaman keamanan, baik yang ditimbulkan dari dalam maupun dari luar. Saat ini ancaman terorisme juga semakin sering terjadi, tidak menutup kemungkinan tempat seperti Pusat Penelitian Tenaga Nuklir (PPTN) Serpong menjadi salah satu target sasaran teroris. Untuk itu diperlukan suatu sistem pengamanan yang dapat menjawab segala ancaman yang datang.
Sasaran dari suatu kegiatan pengamanan meliputi pengamanan personil, pengamanan fisik, dan pengamanan informasi. Dalam penelitian ini pembahasan lebih difokuskan kepada Manajemen Pengamanan Fisik (Physical Security Management} berupa sistem pengamanan instalasi dan material nuklir, sedangkan mengenai pengamanan personil dan informasi dalam penelitian ini penulis hanya membatasi secara garis besarnya saja.
Pengamanan suatu kawasan objek vital nasional mengacu kepada Keppres RI Nomor 63 Tahun 2004 tentang Pedoman Sistem Pengamanan Objek Vital Nasional, dimana tugas dan tanggung jawab pengamanan berada di tangan Polri. Sebagai penjabaran Keppres tersebut Kapolri telah mengeluarkan Surat Keputusan tentang Pedoman Pengamanan Objek Vital sesuai Skep Kapolri No.Pol Skep738/X/2005 tanggal 13 Oktober 2005.
Pengamanan Pusat Reaktor dilaksanakan oleh Satuan Unit Pengamanan Nuklir Pusat Reaktor BATAN Serpong berpedoman pada ketentuan seperti Standar Penyelenggaraan Sistem Proteksi Fisik Bahan dan Fasilitas Nuklir serta peraturan regulasi instalasi nuklir dari BATAN dan IAEA (International Atomic Energy Agency) yang merupakan standar pengamanan internasional untuk pengamanan objek vital fasilitas nuklir di dunia. Namun sebagai suatu Objek Vital Nasional maka pengeloia keamanan Pusat Reaktor Serba Guna GA Siwabessy juga harus berpedoman kepada ketentuan Pedoman Sistem Pengamanan Objek Vital Nasional yang telah dikeluarkan Mabes Polri.
Berdasarkan latar belakang tersebut, yang dijadikan masalah penelitian dalam kajian tesis ini adalah bagaimana sistem pengamanan di Pusat Reaktor tersebut dilaksanakan. Penulis ingin mengetahui bagaimana pengamanan fisik suatu instalasi nuklir dilaksanakan. Apakah penerapan sistem pengamanan yang ada sudah sesuai dengan pedoman dan ketentuan yang berlaku. Dan apakah Polri telah menjalankan tugasnya dalam mengamankan suatu kawasan objek vital sesuai dengan Undang-undang Nomor 2 Tahun 2002 tentang Path dan Keputusan Presiden RI Nomor 63 Tahun 2004 tentang Pedoman Pengamanan Objek Vital Nasional.
Kondisi yang ada saat ini pihak pengelola keamanan Pusat Reaktor Serba Guna GA Siwabessy baru berpedoman kepada ketentuan secara internal dari BATAN dan IAEA raja, dan belum mengacu kepada Pedoman Sistem Pengamanan Objek Vital Nasional sehingga membuat penyelenggaraan pengamanan di kawasan tersebut belum terselanggara dengan baik.
Unit Pengamanan Nuklir PRSG-GAS sebagai pelaksana pengamanan di Pusat Reaktor bertanggung jawab kepada Kepala Pusat Reaktor tentunya harus melakukan koordinasi kepada Polri sebagai pengemban fungsi koordinasi, pengawasan, dan pembinaan teknis terhadap pengamanan swakarsa sebagaimana dijelaskan dalam pasal 14 Undang-Undang Nomor 2 tahun 2002 tentang Kepolisian Negara RI.
Ruang lingkup masalah penelitian ini meliputi struktur organisasi dan penjabaran tugas dari satuan pengamanan yang ada, pola pengamanan dan cars bertindak petugas satuan pengamanan jika timbul suatu kerawanan dan bahaya serta ancaman keamanan, kegiatan dari satuan pengamanan, bentuk kerawanan dan bahaya serta ancaman keamanan yang terjadi, faktor-faktor yg mempengaruhi terjadinya kerawanan dan bahaya serta ancaman keamanan di Pusat Reaktor Serba Guna G.A Siwabessy, sarana dan prasarana keamanan yang sesuai dengan fasilitas instalasi nuklir, pengawasan dan pengendalian yang dilaksanakan.
Dari hasil penelitian dapat ditarik kesimpulan bahwa pelaksanaan sistem pengamanan di Pusat Reaktor Serba Guna GA Siwabessy (PRSG-GAS) dilaksanakan rnelalui sistem pengamanan yang kurang baik karena hanya berpedoman kepada Pedoman Pengamanan Instalasi Nuklir yang dikeluarkan oleh BATAN dan IAEA saja, tidak berpedoman dengan Pedoman Sistem Pengamanan Objek Vital Nasional yang dikeluarkan Polri sebagai penjabaran Keputusan Presiders RI nomor 63 tahun 2004 tentang Pengamanan Objek Vital Nasional Selain itu penyelenggaraan pengamanan masih bersifat parsial sendiri-sendiri dan fungsi koordinasi antar satuan pengamanan yang ada tidak berjalan dengan baik."
Depok: Program Pascasarjana Universitas Indonesia, 2006
T17755
UI - Tesis Membership  Universitas Indonesia Library
cover
B.Y. Eko Budi Jumpeno
"Pembangunan Kawasan Reaktor Nuklir GA. Siwabessy di Serpong, Jawa Barat yang meliputi juga Reaktor Nuklir G.A. Siwabessy didasarkan pada pertimbangan bahwa teknologi nuklir memiliki suatu manfaat yang besar bagi pembangunan. Walaupun demikian paparan radiasi nuklir dan kontaminasi zat radioaktif dalam operasi normal maupun pada kasus kecelakaan, terutama terhadap kesehatan dan keselamatan manusia merupakan risiko penggunaan teknologi nuklir, sehingga pembangunan dan pengoperasian suatu instalasi nuklir -termasuk Reaktor Nuklir G.A. Siwabessy-, selalu berpedoman pada tiga asas yaitu justifikasi, optimisasi (ALARA) dan limitasi. Selain itu diperlukan suatu studi AMDAL yang juga meliputi rencana pengelolaan lingkungan (RKL) dan rencana pemantauan Iingkungan (RPL) dan sudah dilakukan di Kawasan Reaktor Nuklir G.A. Siwabessy. Paparan radiasi nuklir dan kontaminasi zat radioaktif dapat terjadi di kawasan Reaktor Nuklir G.A. Siwabessy sehingga diperlukan upaya pemantauan konsentrasi zat radioaktif di udara. Pemantauan secara periodik diperlukan untuk mendeteksi sedini mungkin terjadinya Iepasan zat radioaktif ke Iingkungan melalui cerobong atau lepasan zat radioaktif dalam udara ruangan kerja pada kondisi operasi normal sehingga bila terjadi peningkatan lepasan dapat segera dilakukan tindakan pengurangan atau penghentian operasi. Selain melaksanakan pemantauan secara teratur, Batan melalui SK Dirjen Batan No. PN 03/160/DJ/1989 telah menetapkan tingkat konsentrasi radioaktivitas dalam udara yang diperkenankan berdasarkan rekomendasi International Commission on Radiological Protection (ICRP Publication 26, 1977). Tingkat konsentrasi radioaktivitas di udara ini berkaitan dengan nilai limit on intake (ALI) pada jalur inhalasi dan kapasitas paru-paru pekerja radiasi dan anggota masyarakat. Dalam hal ini yang perlu diperhatikan ialah rekomendasi-rekomendasi yang telah diadopsi oleh Batan dari ICRP didasarkan pada perhitungan risiko yang menggunakan data fisiologi standar yang sebagian besar merupakan data manusia ras Kaukasus. Berdasarkan studi lanjut pada korban radiasi bom atom di Hiroshima dan Nagasaki, ICRP menerbitkan rekomendasi keselamatan radiasi yang baru dalam ICRP Publication 60 tahun 1990, di mana salah satu butir rekomendasinya ialah pengurangan nilai batas dosis dari 50 mSv/tahun menjadi 20 mSv/tahun. Seperti pada ICRP Publication 26 tahun 1977, penentuan batas-batas standar keselamatan juga didasarkan pada standar fisiologi ras Kaukasus dan ditambah standar fisiologi manusia Jepang. Namun demikian rekomendasi keselamatan yang terakhir masih menjadi bahan studi negara-negara pemilik fasilitas nuklir.
Salah satu aspek penting yang perlu dicermati dari rekomendasi batas dosis pada ICRP Publication 60 tahun 1990 yang boleh diterima oleh manusia adalah apakah desain sistem keselamatan yang diterapkan pada saat ini memenuhi kriteria tersebut. Apabila desain sistem keselamatan tidak memenuhi kriteria maka konsekuensi logisnya adalah perubahan desain keselamatan yang bemilai ekonomi sangat besar. Oleh karena itu perlu dilakukan kajian aspek-aspek yang terkait dengan keselamatan. Kegiatan studi paparan internal pada jalur inhalasi menempatkan kondisi Iingkungan faktual pads saat Reaktor Nuklir G.A. Siwabessy dalarn keadaan beroperasi yang meliputi :
1. Definisi kapasitas paru-paru para pekerja di kawasan
2. Rentang fluktuasi lepasan radionuklida di kawasan
3. Prediksi dosis interna yang disebabkan oleh paparan radionuklida yang terdeposisi di dalam tubuh melalui jalur inhalasi.
Penelitian dan kajian dalam Studi Paparan Interna pada Jalur lnhalasi di Kawasan Reaktor Nuklir G.A. Siwabessy bertujuan untuk mendapatkan data kapasitas paru-paru pekerja di kawasan, untuk mendapatkan data jenis dan kadar radionuklida di udara kawasan, dan untuk memprediksi dosis interna yang diterima para pekerja. Data tersebut sangat berguna untuk mengevaluasi desain keselamatan Reaktor Nuklir G.A. Siwabessy baik yang mengacu pads ICRP Publication 26 tahun 1977 maupun ICRP Publication 60 tahun 1990 serta mengevaluasi prosedur-prosedur keselamatan yang diterapkan.
Berdasarkan uraian di atas dapat disampaikan hipotesis penelitian ini sebagal berikut:
Pertama; kapasitas paru-paru seseorang ditentukan oleh faktor jenis kelamin, umur, berat dan tinggi badan, serta kondisi kesehatan seseorang. Ras dan kondisi kesehatan seseorang diduga sangat menentukan nilai kapasitas paru-paru.
Kedua; konsentrasi radioaktivitas di udara dipengaruhi oleh tinggi cerobong lepasan, dan faktor cuaca seperti kecepatan angin dan curah hujan. Tetapi faktor cuaca tersebut berlangsung sangat acak. Rentang maksimum diduga pada kondisi kecepatan angin rendah dan kondisi tidak hujan. Sedangkan rentang minimum diduga terjadi pada kondisi angin bertiup kencang dan kondisi sesudah hujan deras.
Ketiga; prediksi dosis interna melalui jalur inhalasi ditentukan oleh kapasitas paru-paru yang meliputi kapasitas fungsional residu, volume ruang mati dan volume tidal; konsentrasi radioaktivitas di udara; diameter partikel radionuklida; laju pernapasan dan dimensi saluran pernapasan yang meliputi diameter trakea dan diameter bronkiolus. Sumbangan masing-masing parameter tersebut terhadap nilai dosis interna berbeda-beda. Diduga pengaruh terbesar diberikan oleh diameter trakea, diameter bronkiolus dan diameter partikel radionuklida yang terdeposisi di dalam tubuh.
Studi paparan interna pada jalur inhalasi ini dilaksanakan di Kawasan Reaktor Nuklir G.A Siwabessy dalam radius sekitar 500 meter dari reaktor.
Pengambilan sampel udara Iingkungan dilakukan pada enam titik pengukuran dengan memperhatikan arah angin dominan yaitu pada arah tenggara sampai selatan, sedangkan para pekerja yang diukur kapasitas paru-parunya meliputi juga pengukuran laju pernapasan berasal dari Pusat Reaktor Serbaguna G.A. Siwabessy sebagai responden di dalam gedung reaktor dan dari Pusat Teknologi Pengolahan Limbah Radioaktif untuk responden di Iuar gedung reaktor.
Teknik analisis data yang digunakan ialah analisis statistik sederhana untuk menghitung kapasitas paru-paru para pekerja, analisis spektroskopi nuktir untuk mengidentifikasi radionuklida dan menentukan konsentrasi radioaktivitasnya, analisis grafik untuk menentukan nilai activity median aerodynamic diameter (AMAD) serta penggunaan perangkat iunak LUDEP (Lung Dose Evaluation Program) 2.0 untuk memprediksi dosis interna. Parameter-parameter yang menjadi input dalam perhitungan dosis interna menggunakan LUDEP 2.0 ialah kapasitas paru-paru, dimensi saluran pernapasan, laju pernapasan; konsentrasi radioaktivitas di udara serta diameter partikel radionuklida.
Pada penelitian ini diperoleh hasil nilai median kapasitas vital para pekerja di Kawasan Reaktor Nuklir G.A. Siwabessy sebesar 3,15 liter untuk pria dan 2,20 liter untuk wanita. Sedangkan nilai median volume tidal untuk pria ialah 1,04 liter dan untuk wanita sebesar 0,88 liter. Sementara di udara kawasan tersebut teridentifikasi radionuklida Thallium-208, Plumbum-212 dan Plumbum-214 yang berasal dari alam pada konsentrasi di bawah lima Bq/M3.
Sedangkan hasil perhitungan dosis interna oleh para pekerja menggunakan perangkat lunak LUDEP 2.0 diperoleh penerimaan dosis efektif tertinggi untuk seluruh tubuh sebesar 3,097mSv/tahun pada radius 150 arah selatan tenggara gedung reaktor.
Berdasarkan pengukuran, perhitungan dan kajian yang telah dilakukan dapat disampaikan beberapa kesimpulan sebagai berikut:
Kapasitas paru-paru para pekerja di Kawasan Reaktor Nuklir G.A. Siwabessy relatif lebih kecil dibandingkan dengan kapasitas paru-paru manusia ras Kaukasus yang dipakai sebagai standar ICRP. Hal ini dapat dilihat pada nilai perbandingan kapasitas vital para pekerja di kawasan tersebut terhadap kapasitas vital manusia ras Kaukasus yang dipakai sebagai standar ICRP yang nilainya lebih kecil dari satu.
Di udara ruang kerja Reaktor Nuklir G.A. Siwabessy dan di lingkungan luar reaktor pada radius 500 meter tidak ditemukan adanya radionuklida hasil fisi maupun hasil aktivasi, namun terdeteksi adanya radionuklida Thallium-208, Plumbum-212 dan Plumbum-214 yang berasal dari alam pada konsentrasi lebih kecil dari lima Bq/M3 udara. Dengan demikian pengoperasian Reaktor Nuklir G.A. Siwabessy tidak menimbulkan efek peningkatan radioaktivitas pada Iingkungan udara di kawasan tersebut.
Hasil prediksi perhitungan penerimaan dosis interna melalui jalur inhalasi selama satu tahun untuk konsentrasi radioaktivitas di udara dan ukuran AMAD yang sama, ternyata berbeda pads masing-masing pekerja. Hal ini menunjukkan bahwa nilai kapasitas paru-paru, nilai dimensi saluran pernapasan dan nilai laju pernapasan yang menjadi input perhitungan dosis mempengaruhi penerimaan dosis intema melalui jalur inhalasi, walaupun tingkat pengaruhnya berbeda-beda untuk masing-masing parameter. Berdasarkan perhitungan tersebut penerimaan dosis efektif interna tertinggi nilainya hanya dalam orde 10 mSv. Apabila dibandingkan dengan penerimaan dosis eksterna tertinggi selama satu tahun yang nilainya adaiah 6,28 mSv, sumbangan dosis interna melalui jalur inhalasi terhadap keseluruhan penerimaan dosis tidak signifikan. Nilai ini juga jauh lebih rendah dibandingkan dengan batas penerimaan dosis tertinggi tahunan menurut ICRP Publication 60 yaitu sebesar 20 mSv yang merupakan gabungan dosis intema dan dosis ekstema.
Dari hasil penelitian ini juga terdapat beberapa saran yang baik bagi pengelola Kawasan Reaktor Nuklir G.A. Siwabessy maupun bagi para peneliti lain yang akan melakukan kajian lebih lanjut mengenai radioaktivitas di udara kawasan tersebut sebagai berikut: Untuk memperoleh hasil yang lebih baik pada pengukuran konsentrasi radioaktivitas di udara diperlukan waktu sampling dan waktu pencacahan yang lebih lama. Studi yang dilakukan dalam penelitian ini dapat digunakan dalam kajian keselamatan radiasi suatu instalasi nuklir; khususnya berkaitan dengan paparan interna melalui jalur inhalasi.

The development of G.A. Siwabessy Nuclear Reactor Area at Serpong, West Java including G.A. Siwabessy Nuclear Reactor was based on thought that nuclear technology would benefit the nation. However, the effect of nuclear radiation exposure and radioactive contaminant in normal operation or accident cases, especially for human health and safety, are the risks introduced by the application of nuclear technology, so the development and operation of nuclear installations - including G.A. Siwabessy Nuclear Reactor - always take three principles namely justification, optimization (ALARA) and limitation. Beside, it is necessary to carry out study of analysis for environmental impact (AMDAL) including environmental management plan (RKL) and environmental monitoring plan (RPL) and this activity has already done at G.A. Siwabessy Nuclear Reactor.
Nuclear radiation exposure and radioactive contaminant of the G.A. Siwabessy Nuclear Reactor area are necessary to be monitored. Regular monitoring is needed to detect the releasing of radionuclide into the air or working room at normal condition as early as possible. If the radioactive release improved, the operation could be reduced or stopped. Based on Director General Decree Number PN 03/160/DJ/1989, Batan has made a regulation on the limit of radioactive concentration in the air based on ICRP recommendation (ICRP Publication 26, 1977). The limit of radioactive concentration in the air is related to the limit of intake (ALI) of inhalation pathway and lung capacity of workers or members of public. It is necessary to know that the recommendations adopted Batan from ICRP are based on risk calculations using standard physiological data which much of them are the Caucasian data. Based on advanced researches of atomic bomb victims in Hiroshima and Nagasaki, ICRP published the new radiation safety recommendations in the ICRP Publication 60 year 1990. One of the recommendations is reduction of dose limit from 50 mSv/year to 20 mSv/year. As the recommendations in the ICRP Publication 26 year 1977, the safety standard limits are based on the physiological standard of the Caucasian with additional consideration of physiological standard of the Japanese. However, the recommendations are still assessed by countries which have nuclear facilities.
One of important aspects of dose limit in the ICRP Publication 60 year 1990 is whether the safety system design fulfils the criteria. if the safety system doesn't fulfill the criteria so its consequence is expensive safety design change.
Third, internal dose prediction through inhalation pathway is determined by lung capacity including residual functional capacity, dead space and tidal volume; concentration of radioactivity in the air, diameter of radionuclide particle; rate of respiration and also dimension of respiratory tract including diameter of trachea and diameter of bronchioles . The contribution of each parameter to the internal dose is different. It is estimated that the most influence is contributed by diameter of trachea, diameter of bronchioles and diameter of radionuclide particle deposited in the body.
Study of internal dose at inhalation pathway was carried out in radius 500 meters from reactor. Air sampling was taken at six points by south east to south west wind direction. Meanwhile, the measurement of lung capacity of workers including the rate of respiration was carried out at G.A. Siwabessy Multi Purpose Reactor Centre and Radioactive Waste Management Centre.
Simple statistic is applied to analyze lung capacity of workers; Nuclear spectroscopy method is used for identifying radionuclide and determining its concentration. Curved analysis is used for determining activity median aerodynamic diameter (AMAD). The effective internal dose was calculated by using software LUDEP (Lung Dose Evaluation Program) 2.0. with input of inhalation parameter including lung capacity, dimension of respiratory tract and rate of respiration. The concentration of radioactivity in the air and diameter of radionuclide particle are the other input parameters.
The study reported that vital capacity median of workers is 3.15 liters for male and 2.20 liters for female. Meanwhile, tidal volume for male is 1.04 liters and it is 0.88 liters for female. Thallium-208, Plumbum-212 and Plumbum-214 from natural radioactivity at concentration under five Bq/M³ are identified in the air of G.A. Siwabessy Nuclear Reactor Area. Meanwhile, maximum body effective dose calculated using LUDEP2.0 is 3.097E-1 mSv/year at 150 meters from reactor in south-south east direction.
The conclusions of this research are as follows:
Lung capacity of workers at G.A. Siwabessy Nuclear Reactor Area is lower than the Caucasian lung capacity. It could be seen from comparative vital capacity value which is lower than one.
There are no fissile and activated products indoor and outdoor at radius 500 meters. However, it is detected the existence of Thallium-208, Plumbum-212 and Plumbum-214 from natural radioactivity by concentration lower than five Bq/M³. So that, the operation of G.A. Siwabessy Nuclear Reactor does not cause the radioactive increment to the air.
The calculation of annual body effective internal dose prediction for the same radioactive concentration and AMAD based on LUDEP 2.0 is different for each worker. This shows that lung capacity, dimension of respiratory tract and rate of respiration influence effective internal dose. Maximum effective internal dose received is approximately 10 mSv, compared to maximum external effective dose of 6.28 mSv, this contribution to total effective dose is not significant. According to ICRP
Publication 60, the value is much lower than the annual permissible maximum dose (20 mSv) representing for internal and external dose.
Results of the study suggests as follows :
1. To get the better results in measurements of radioactive concentration in
the air it is suggested to take more time of sampling and counting in order.
2. This study can be used for the assessment of radiation safety around nuclear installations, especially for the internal dose through inhalation pathway.
"
1999
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Teguh Sulistyo
"Sambaran petir merupakan kejadian alam yang dalam proses pelepasan muatan-muatan listriknya terjadi dalam orde mikro detik dan sangat sulit untuk dikendalikan. Pengaruh sambaran petir terhadap obyek sambaran petir di bumi, bergantung pada sistem perlindungan dan kemampuan dari peralatan proteksi yang digunakan. Sambaran ini menghasilkan arus, tegangan dan gelombang elektromagnetik yang cukup besar. Daya maksimum dari medan elektromagnetik ini dapat mencapai 20.000 Mega watt [1], sedangkan arusnya bervariasi dari 2 sampai 200 kA Pit. Akibat dari arus sambaran petir tersebut dapat menimbulkan kerugian.
Sistem Penangkal Petir yang terpasang pada gedung Reaktor Serba Guna GA. Siwabessy (selanjutnya disebut RSG-GAS) merupakan salah satu sistem pendukung yang mempunyai peranan cukup penting khususnya sebagai sistem perlindungan terhadap sambaran petir. Setelah reaktor beroperasi selama 14 tahun terhitung sejak reaktor diresmikan pada tahun 1987, hingga saat ini masih belum ada yang melakukan evaluasi terhadap distribusi arus akibat sambaran petir pada sistem tersebut, yang sering dilakukan adalah pengukuran tahanan pentanahan pada gedung reaktor dan beberapa gedung penunjang lainnya.
Tulisan ini menguraikan suatu analisis perhitungan terhadap distribusi arus sambaran petir pada Sistem Penangkal Petir gedung RSG-GAS. Metoda yang digunakan adalah dengan melakukan simulasi terhadap sambaran petir langsung yang mengenai salah satu bagian finial datar yang terdapat pada bagian atap gedung RSG-GAS. Selain itu pula, simulasi sambaran petir juga dilakukan terhadap bagian-bagian lain dari Sistem Penangkal Petir. Untuk mengetahui distribusi dan arah arus sambaran petir tersebut digunakan Hukum Kirchoff 1. Dengan menggunakan bantuan program komputer Electronic Workbench dan Lab View, dapat diketahui besamya distribusi arus sambaran petir dan tegangan yang terjadi pada bagian kisi-kisi finial dan penyalur arus sambaran petir.

Lightning Stroke Current Distribution Analysis for Multi Purpose Reactor GA. Siwabessy Building Lightning Protection SystemLightning stroke is a weather phenomena where the electricity charge release occur in a micro second and very difficult to control it. Lightning stroke effect to the object in the earth depends on the lightning protection and the..capability of the instrumentation protection used. This stroke resulted the big enough current, voltage and electromagnetic waves. The maximum power of this electromagnetic field can reach 20.000 MW t11 and the current variety from 2 - 200 kA tit. The lightning stroke can effect severe.
This paper is analyzing the calculation of the lightning stroke current distribution at the RSG-GAS building lightning protection system. The method is using simulation to the direct lightning stroke which strike the finial at the roof of the RSG-GAS building. To know the distribution and lightning stroke current direction used Kirchoff I law. Electronic Workbench and Lab View computer system are used to know the amount of the lightning stroke distribution and the voltage occur at the finial and lightning stroke current distributor."
Depok: Universitas Indonesia, 2001
T8483
UI - Tesis Membership  Universitas Indonesia Library
cover
Hanapi Ali
"Reaktor Riset Nuklir dengan air ringan sebagai zat pendingin memiliki sistem pendingin yang dilengkapi dengan komponen kamar tunda. Fungsi ruang tunda adalah untuk menunda aliran agar gas hasil reaksi fisi khususnya Nitrogen-16 (N-16) dapat meluruh pada ambang batas yang diizinkan. Gas tersebut akan menumpuk pada bagian atas kamar tunda yang diduga sebagai sebab terjadinya shutdown operasi reaktor karena sinyal Loss Of Coolant Accident (LOCA). Tujuan dari penelitian ini adalah mengetahui performa dari kamar tunda. Performa yang ingin di kaji meliputi lama waktu aliran didalam kamar tunda, serta perubahan hilang tekan terhadap penumpukan gas didalamnya. Computations fluid dynamics (CFD) menggunakan metode particle tracking pada model skala kamar tunda dilakukan untuk mengetahui lama waktu tinggal aliran. Metode pengujian eksperimen dengan membuat model skala uji digunakan untuk melihat fenomena variasi rasio udara terjebak terhadap perubahan hilang tekan pada kamar tunda. Hasil simulasi model skala menunjukkan waktu tinggal aliran selama 15,6 detik dan divalidasi dengan persamaan skala yang dilakukan dan didapatkan error sebesar 10,09%. Meningkatnya rasio udara terjebak didalam kamar tunda sebanding dengan kenaikan hilang tekan didalamnya. Kenaikan hilang tekan kamar tunda mulai mempengaruhi sistem pada rasio udara terjebak sebesar 12%, dimana terlihat pembentukan buble dan laapisan udara di bawah sekat 1 serta adanya void yang terbentuk pada outlet.

The Nuclear Research Reaktor with light water as a coolant has a cooling system equipped with a delay chamber component. The function of the delay chamber is to delay the flow so that the fission gas can decay at the permissible threshold, especially Nitrogen-16 (N-16). The gas will accumulate at the top of the delay chamber that suspects to activate the Loss Of Coolant Accident (LOCA) signal and shut down the reaktor. The purpose of this study was to determine the performance of the decay chamber. Performances of the delay chamber are the residence time of the flow inside the delay chamber and the change of pressure drop due to gas accumulation inside. The delay chamber scaled model simulation has been carried out. Computations fluid dynamics (CFD) using the particle tracking method carried out to determine the residence time of the flow. The experimental test scale model is used to see the relationship between trapped air and pressure drop inside the delay chamber. The CFD scale model simulation results that the residence time of the flow is 15.6 seconds. the result is validated by the scale equation and an error of 10.09% is obtained. An increase in the ratio of trapped air causes an increase in pressure drop between the inlet and outlet. The increase in pressure loss inside the delay chamber began to affect the system at a 12% trapped air ratio. The experiment has shown the formation of bubbles and air layers inside the delay chamber and the presence of voids formed at the outlet."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Anggraini Ratih Kumaraningrum
"Reaktor Serba Guna GA. Siwabessy RSG-GAS menyimpan potensi bahaya radiasi, walaupun telah didesain dan dibangun dengan mempertimbangkan berbagai faktor keselamatan. Sistem keselamatan pada pendingin primer merupakan komponen yang penting dan berfungsi sebagai penghalang ganda reaktor nuklir. Apabila sistem pendingin primer gagal beroperasi, maka sistem keselamatan pada sistem pendingin primer akan bekerja untuk mencegah pelepasan zat radioaktif, melalui sistem 'scram', sehingga reaktor dapat terhindar dari kecelakaan yang parah. Oleh karena itu, evaluasi sistem keselamatan dari sistem pendingin primer, dengan menggunakan suatu metode analisis keselamatan yang tepat, perlu dilakukan untuk mengukur tingkat kinerja dari sistem keselamatan tersebut.
Fault tree analysis sering digunakan secara deduktif untuk mengevaluasi kinerja keselamatan secara probabilistik probabilistic safety assessment, PSA . Dalam melakukan PSA ini digunakan data generik karena data kegagalan komponen yang dimiliki oleh suatu objek analisis biasanya tidak tersedia secara detail. Data generik tidak menggambarkan kondisi kebolehjadian kegagalan komponen yang sebenarnya. Selain itu, data generik tidak cocok untuk diterapkan pada komponen ndash; komponen yang sudah mengalami proses ageing karena adanya penurunan keandalan komponen yang diakibatkan pada proses ageing. Penggunaan data generik akan menambah ketidakpastian pada hasil PSA.
Untuk mengatasi hal tersebut diusulkan penggunaan metode fuzzy fault tree analysis FFTA. Nilai probabilitas basic events yang dihasilkan dari FFTA kemudian digunakan untuk menghitung probabilitas kejadian menggunakan metode Event Tree Analysis ETA dan diperoleh hasil probabilitas kejadian dengan nilai terbesar 4,304 x 10-8/tahun. Seluruh skenario berdasarkan CDF dan CDS, berada dalam kategori medium risk dan low risk, sehingga dapat dinyatakan bahwa RSG ndash; GAS aman untuk dioperasikan.

G.A. Siwabessy Multipurpose Reactor RSG GAS has significant potency of radiation hazard, although it has been designed and constructed by considering comprehensive safety factors. The safety system of primary cooling system is one of the most important components of the reactor and serve as multiple barriers in a nuclear reactor. If there is a failure on the primary cooling system operation, the safety system in the primary cooling system will work to prevent the release of radioactive material through the ldquo scram rdquo system, a severe accident of the reactor can be avoided. Therefore, an evaluation toward the safety system of the primary cooling system by occupying the proper safety analysis method, is required to be carried out. So that, the performance level of the safety system can be figured out.
Fault tree analysis is frequently applied to deductively carry out the safety system evaluation by occupying the probabilistic assessment method PSA . To perform this PSA, the generic data is used because the data of components failure owned by an object of analysis, is not available in detail. The generic data used in the safety analysis does not describe the real probability of component failures. In addition, generic data is not applicable for old components because the old components reliability is really affected by the ageing process. But, when generic data is occupied on PSA then, it will increase the uncertainty value of the PSA result.
To solve this problem, another safety analysis method, called as Fuzzy Fault Tree Analysis FFTA Method, is proposed in this research. The basic event probability values generated from FFTA are then applied for calculating the probability of event using Event Tree Analysis ETA Method in order to obtain the probability of each event, with the result that, the obtained greatest value is 4.304 x 10 8 year. All scenario based on CDF and CDS are in the medium risk and low risk category, so it can be concluded that RSG GAS is safe to be operated.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
T50779
UI - Tesis Membership  Universitas Indonesia Library
cover
Puspitasari Ramadania
"Petugas shift merupakan bagian dari pekerja kritis di Instalasi RSG-GAS. Sistem kerja shift dan tuntutan kerja yang kompleks di instalasi nuklir menyebabkan petugas shift rentan mengalami kelelahan kerja. Kelelahan kerja memiliki kontribusi terhadap penurunan performa kerja, penurunan konsentrasi, penurunan pemenuhan prosedur maupun penurunan kewaspadaan. Penelitian ini bertujuan untuk mengevaluasi tingkat kelelahan kerja petugas shift dan melakukan analisis terhadap faktor risiko yang berkontribusi pada kelelahan kerja petugas shift di RSG-GAS Tahun 2022. Desain penelitian adalah cross-sectional. Instrumen yang digunakan dalam penelitian ini adalah kuesioner, alat ukur lingkungan kerja, wawancara, dan telaah dokumen. Metode analisis menggunakan analisis deskriptif dan inferensial dengan uji korelasi. Hasil penelitian menunjukkan seluruh petugas shift mengalami kelelahan dengan tingkat kelelahan ringan sebesar 31,25%, kelelahan sedang sebesar 64,58%, dan kelelahan berat sebesar 4,17%. Faktor risiko kelelahan kerja adalah status Gizi yang diukur dengan indeks massa tubuh, kualitas tidur, beban kerja, dan desain tugas. Faktor risiko kelelahan umum adalah indeks massa tubuh, kualitas tidur, kuantitas tidur, konsumsi kafein, beban kerja, dan desain tugas. Faktor risiko kelelahan fisik adalah usia, kualitas tidur, kuantitas tidur, masa kerja, posisi kerja, beban kerja, desain tugas, dan tekanan udara negatif. Faktor risiko pelemahan aktivitas adalah kepuasan kerja. Faktor risiko pelemahan motivasi adalah kualitas tidur, kuantitas tidur, desain tugas dan shift malam. Faktor risiko kelelahan mental adalah kualitas tidur, beban kerja, desain tugas, pencahayaan, dan tekanan udara negatif. Rekomendasi pengendalian melibatkan manajemen dan petugas shift dengan mengembangkan program manajemen kelelahan kerja sesuai kondisi di Instalasi Nuklir.

Shift workers are part of critical workers at the RSG GAS Installation. The shift work system and complex work demands in nuclear installations cause shift workers to be prone to work fatigue. Work fatigue has contributed to decreased work performance, decreased concentration, decreased in procedure compliance, and reduced alertness. This study aims to evaluate the level of work fatigue of shift workers and analyze the risk factors that contribute to the work fatigue of shift workers at RSG-GAS in 2022. This research is a quantitative descriptive study with a cross-sectional design. The instruments used in this research are questionnaires, measuring tools for the environment, interviews, and documents. The method of analysis in this research is descriptive and inferential analysis with a correlation test. The results showed that all shift workers experienced fatigue with mild fatigue level of 31,25%, moderate fatigue of 64,58%, and severe fatigue of 4,17%. The risk factors for work fatigue (total score) are nutritional status as measured by body mass index, sleep quality, workload and task design. The risk factors for general fatigue are body mass index, sleep quality, sleep quantity, caffeine consumption, workload, and task design. The risk factors for physical fatigue are age, sleep quality, sleep quantity, years of service, job role, workload, task design, and negative air pressure. The risk factor for reduced activity is job satisfaction. The risk factors for reduced motivation are sleep quality, sleep quantity, task design, and night shift. The risk factors for mental fatigue are sleep quality, workload, task design, lighting, and negative air pressure. Control recommendations involve management and shift worker by developing a work fatigue management program according to the conditions at the Nuclear Installation."
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
Edison
"Komputer proses Reaktor Serba Guna G.A. Siwabessy (RSG-GAS)
digunakan untuk pemerosesan, pencatatan dan penampilan parameterparameter
operasi reaktor. Komputer proses ini terdiri dari komponenkomponen
instrumen virtual. Tersedianya komponen-komponen instrumen
virtual ini bersama sistem pengukuran fluks neutron memungkinkan
dikembangkannya berbagai macam instrumen virtual untuk memonitor
fluks neutron. Sehingga dengan komputer proses yang tersedia dan tanpa
memerlukan perangkat tambahan, imitasi dari instrumen fisis sistem
tersebut dapat dibangun. Dalam penelitian ini dikembangkan instrumeninstrumen
virtual berupa akuisisi dan pencatatan fluks neutron, kalibrator
meter reaktivitas dan meter reaktivitas. Pembuatan sistem melibatkan
studi mengenai kinetika/fisika reaktor, metode numerik, instrumentasi
umum dan nuklir, pemrograman labVIEW dan penelitian-penelitian yang
dilakukan sebelumnya. Hasil percobaan menunjukkan bahwa sistem yang
dikembangkan dapat berfungsi dengan baik dan dengan akurasi yang
cukup baik. Namun demikian beberapa hal yang sesungguhnya diluar
batas masalah penelitian ini tetapi diperlukan dalam percobaan disarankan untuk dijadikan penelitian lanjutan."
Depok: [Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;, ], 2005
T39740
UI - Tesis Membership  Universitas Indonesia Library
cover
Ratiko
"Penelitian ini membahas optimasi sistem ventilasi dan tata udara untuk Instalasi Penyimpanan Sementara Bahan Bakar Nuklir Bekas dari Reaktor Riset G.A. Siwabessy. Keterbaruan dari penelitian ini adalah didapatkannya beberapa persamaan yang diperlukan. Optimasi yang dilakukan pada penelitian ini selain untuk Instalasi Penyimpanan Sementara Bahan Bakar Nuklir Bekas yang sudah ada juga untuk Instalasi Penyimpanan Sementara Bahan Bakar Nuklir Bekas tipe kering yang saat ini belum dibangun. Hasil dari penelitian ini menunjukkan bahwa beberapa persamaan yang dikembangkan pada penelitian ini bisa dibuktikan mendekati hasil eksperimen.

This study discusses an optimization of ventilation and air conditioning systems for the Interim Storage of Spent Nuclear Fuel Fuel from the G.A Siwabessy Research Reactor. The novelty of this research is to gain several equations needed for the optimization. The optimization in this study is in addition to the existing wet interim storage also for a dry storage that is currently still not built. The results of this study indicate that the equations developed in this study are consistent with the experimental results."
Depok: Universitas Indonesia, 2017
D2384
UI - Disertasi Membership  Universitas Indonesia Library
cover
<<   1 2 3 4 5 6 7 8 9 10   >>