Ditemukan 47382 dokumen yang sesuai dengan query
Haryono Semangun
Yogjakarta: Gadjah Mada University Press, 1992
R 632.3 HAR h
Buku Referensi Universitas Indonesia Library
Bawden, F.C.
New York: Ronald Press, 1964
581.234 BAW p
Buku Teks Universitas Indonesia Library
Leach, Julian Gilbert
New York: McGraw-Hill, 1940
581.33 LEA i
Buku Teks Universitas Indonesia Library
Mukerji, K.G.
New Delhi: Tata McGraw-Hill, 1986
R 632.309 54 MUK p
Buku Referensi Universitas Indonesia Library
London : Springer, 2010
571.92 REC
Buku Teks Universitas Indonesia Library
Mound, L.A.
Chichester: John Wiley & Sons, 1978
595.752 MOU w
Buku Teks Universitas Indonesia Library
Himan Hanivan
"
ABSTRAKNumerous studies have constructed financial inclusion indexes for Indonesia, using a multidimensional approach. However, there is a problem with the methodology, which assumes that all the dimensions play the same role in defining financial inclusion, since they are based on equal weighting criteria. This paper aims to obviate concerns with the methodology by developing a more empirically based index, namely, a weighted multidimensional index of financial inclusion based on two-stage principal component analysis. In other words, we endogenize the weights. We find that usage is the most important dimension in defining financial inclusion in Indonesia, followed by availability and access."
Jakarta: Bank Indonesia Insitute, 2019
332 BEMP 22:3 (2019)
Artikel Jurnal Universitas Indonesia Library
Geneva: World Health Organization, 2016
R 616.001 2 INT
Buku Referensi Universitas Indonesia Library
Sitorus, Rita Sita
Netherlands: Ponsen & Looijen, 2004
617.7 SIT m
Buku Teks SO Universitas Indonesia Library
Putu Adika Reswara
"
Di antara sebagian besar sektor industri lainnya, industri kimia sedang mengalami pergolakan signifikan yang didorong oleh konsep yang secara kolektif dikenal sebagai Industri 4.0. Data sains adalah komponen penting dari Industri 4.0 karena memungkinkan ekstraksi informasi kontekstual dari berbagai sumber data. Ketika sistem menjadi lebih kompleks, kebutuhan para insinyur untuk mengekstrak sinyal dari data dengan tepat berkembang secara dramatis, menuntut literasi data dan keahlian analitik pada generasi berikutnya dari lulusan teknik kimia. Salah satu dari banyak kasus di mana data sains dan machine learning dapat diterapkan adalah untuk prediksi. Prediksi berbasis machine learning dapat diterapkan pada banyak aspek teknik kimia contohnya pada Chemical Engineering Plant Cost Index (CEPCI). CEPCI sangat penting untuk perhitungan desain pabrik dan dipengaruhi oleh banyak variabel. Pendekatan machine learning diperlukan untuk memperhitungkan semua variabel tersebut dan mendapatkan hasil yang tepat untuk variabel yang ditargetkan. Dengan demikian, tujuan dari tugas akhir ini adalah merancang program yang mampu memprediksi CEPCI. Alhasil, model regresi yang telah dibuat mampu memprediksi Composite CE Index dengan error rata-rata 3.75% dari index aslinya.
Among most other industrial sectors, the chemical industry is undergoing a significant upheaval driven by concepts known collectively as Industry 4.0. Data science is an important component of Industry 4.0 since it enables the extraction of contextualized information from a variety of data sources. As systems become more complex, the necessity for engineers to appropriately extract signal from data develops dramatically, demanding data literacy and analytics expertise in the next generation of chemical engineering graduates. One of the many cases where data science and machine learning can be applied to is for prediction. Machine Learning based prediction can be applied to many chemical engineering aspects, in this case the Chemical Engineering Plant Cost Index (CEPCI). CEPCI is essential for plant design calculations and is greatly affected by numerous variables. Machine learning approach is needed to account for all said variables and obtain valid result for target variables. Thus, the purpose of this thesis is to design programs that are able to predict CEPCI. As a result, the regression model created was able to predict the Composite CE Index with average error of 3.75% from the real index.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library