UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Peramalan Permintaan Produk Baru Fesyen Menggunakan Metode Hibrida Klastering K-Means dan Metode Klasifikasi Decision Treeserta Moving Average = Forecasting Demand Of Fashion New Product Using Hybrid Method Clustering K-Means, Classification Decision Tree, And Moving Average

Yulia Dwi Susanti; Farizal, supervisor; Rahmat Nurcahyo, supervisor; Djoko Sihono Gabriel, examiner; Muhammad Dachyar, examiner (Fakultas Teknik Universitas Indonesia, 2021)

 Abstrak

Penjualan produk fesyen merupakan penjualan dengan tingkat kompetisi yang sangat tinggi dimana inventris merupakan faktor penting yang mempengaruhi permintaan produk dan keuntungan perusahaan. Produk fesyen merupakan produk dengan siklus hidup yang sangat singkat dimana suatu produk dapat digantikan dengan produk yang baru dalam jangka waktu yang sangat cepat. Kendala berupa kelebihan stok maupun kekurangan stok merupakan masalah yang sering terjadi. Perkiraan permintaan yang akurat untuk produk-produk tersebut sangat penting dalam mendorong operasi bisnis yang efisien dan mencapai keunggulan kompetitif yang berkelanjutan. Metode peramalan yang akurat sangat diperlukan dalam meramalkan produk fesyen karena beragamnya produk fesyen, selain itu produk fesyen memiliki data historis yang terbatas karena siklus hidupnya yang pendek. Oleh karena itu, sangat penting untuk mengembangkan metode peramalan yang berbeda untuk menganalisis tren permintaan produk ini. Dalam penelitian ini, skema peramalan dilakukan meggunakan metode hibrida klastering K-Means untuk melakukan agregasi terhadap beberapa jenis produk fesyen pada produk lama/produk historis, klasifikasi decision tree untuk meramalkan produk baru berdasarkan karakteristik produk lama, serta metode moving average untuk meramalkan penjualan berdasarkan time series pada produk baru.

Indonesian local fashion products are currently common in Indonesia because of highly level of competition where many business owner start their business in fashion local, higher demand from Indonesian citizen, efficient product development timeline and increasingly product diversity. The significant growth of Indonesian fashion local product has caused of a competitive business with the scope of Indonesian fashion local business. Accurate demand forecasting of such products become important in driving effective business especially in local fashion product and achieving a sustainable competitive advantage. In this study, forecasting demand of Indonesian local fashion product using hybrid method clustering K-means algorithm, classification method decision tree and moving average was conducted. Five independent variable/attribute descriptive was conducted to classify the item using decision tree classification method. They are color, size, material, price, and motif. In this research, the forecasting was performed as mid-term forecasting method.

 File Digital: 1

Shelf
 T-Yulia Dwi Susanti.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2021
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xvi, 72 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-pdf 15-25-71633415 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920560878
Cover