UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Prediksi Jumlah Insiden Demam Berdarah di DKI Jakarta Menggunakan ARIMA-GRNN (Autoregressive Integrated Moving Average-General Regression Neural Network) = Predicting Dengue Fever Incidence in DKI Jakarta Using ARIMA-GRNN (Autoregressive Integrated Moving Average-General Regression Neural Network)

Simatupang, Tania Naomi Serepina; Bevina Desjwiandra Handari, supervisor; Gatot Fatwanto Hertono, supervisor; Helen Burhan, examiner; Siti Aminah, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024)

 Abstrak

Demam berdarah dengue (DBD) merupakan infeksi virus yang menyebar dari nyamuk ke tubuh manusia dan menjadi masalah kesehatan utama di berbagai negara, termasuk Indonesia. Pada tahun 2023, lebih dari 3,7 juta kasus infeksi DBD dilaporkan secara global, dengan lebih dari 2.000 kematian. Indonesia adalah salah satu negara dengan tingkat kasus DBD yang tinggi, khususnya di Provinsi DKI Jakarta. Mengingat tingginya angka kasus DBD di DKI Jakarta, skripsi ini bertujuan untuk memprediksi kasus DBD di lima Kota madya DKI Jakarta. Skripsi ini menggunakan model ARIMA-GRNN, yang merupakan gabungan dari model ARIMA (Autoregressive Integrated Moving Average) dan GRNN (General Regression Neural Network). Data yang digunakan dalam penelitian ini adalah data kasus bulanan demam berdarah di DKI Jakarta, yang dikumpulkan dari tanggal 1 Januari 2009 hingga 30 Agustus 2023. Hasil akurasi model ARIMA dan ARIMA-GRNN dalam memprediksi jumlah insiden demam berdarah di DKI Jakarta menunjukkan hasil prediksi model ARIMA lebih akurat untuk Jakarta Selatan dan Jakarta Timur, sedangkan hasil prediksi model ARIMA-GRNN memberikan hasil yang lebih baik untuk Jakarta Pusat, Jakarta Barat, dan Jakarta Utara. 

Dengue fever (DF) is a viral infection transmitted from mosquitoes to humans and has become a major health issue in various countries, including Indonesia. In 2023, more than 3.7 million cases of DF infection were reported globally, with over 2,000 deaths. Indonesia is one of the countries with a high rate of DF cases, particularly in the Province of DKI Jakarta. Given the high number of DF cases in DKI Jakarta, this final project aims to predict DF cases in the five municipalities of DKI Jakarta. This final project uses the ARIMA-GRNN model, which is a combination of the ARIMA (Autoregressive Integrated Moving Average) model and the GRNN (General Regression Neural Network). The data used in this research comprises monthly DF case data in DKI Jakarta, collected from January 1, 2009, to August 30, 2023. The accuracy results of ARIMA and ARIMA-GRNN models in predicting the number of dengue fever incidents in DKI Jakarta indicate that the ARIMA model is more accurate for South Jakarta and East Jakarta, while the ARIMA-GRNN model provides better results for Central Jakarta, West Jakarta, and North Jakarta.

 File Digital: 1

Shelf
 S-Simatupang, Tania Naomi Serepina.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xvi, 107 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-25-49680891 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920553434
Cover